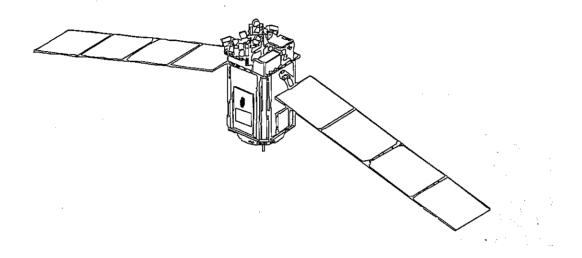


SABER Preliminary Design Review


Contract No. NAS1-20467 December 10,11 & 12, 1996

SPACE DYNAMICS LABORATORY UTAH STATE UNIVERSITY LOGAN, UTAH 84321-1942

SABER Preliminary Design Review

Contract No. NAS1-20467 December 10,11 & 12, 1996

SABER PDR Agenda, Day One Tuesday, December 10, 1996

Time	Торіс	Presenter
8:00	Welcome	Allan Steed
	Agenda & Logistics	Lorin Zollinger
	Opening Remarks	Lenny McMaster
8:15	Project Status, Milestones & Funding	Jim Miller
8:20	SRR Action Item Status	Jim Miller
8:30	Science Overview	Jim Russell
9:00	Requirements, Baseline Changes, Instrument Overview,	Lorin Zollinger
	& Risk Management	
10:00	Break and the second se	The same of the sa
10:15	Radiometric & Optical Subsystem Overview	Roy Esplin
11:00	Scanner Subsystem Overview	Frank Peri, Steve Brown
11:15	Mechanical/Structural Subsystem Overview	Merdad Roosta, Steve Folkman
11:45	Thermal Overview	Clair Batty
12:15	Lunch	ALEXANDER OF THE SECTION OF THE SECT
1:15	Electronics Overview	Mark Jensen
1:45	Calibration Plan & GSE Overview	Joe Tansock
2:30	Electrical GSE & GSE Software	Keith Paskett
3:15	Break Break	The state of the s
3:30	Fabrication, Integration & Test	Steve Brown
4:00	Calibration Test Schedule	Joe Tansock
4:10	Contamination Control	Jim Dyer
4:30	Action Item Review	

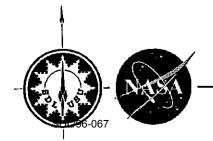
SABER PDR Agenda, Day Two Wednesday, December 11, 1996

Building 2 Conference Rooms 127& 128			Building 4 Conference Room A151	
Time	Topic	Chairman/Presenter	Topic	Chairman/Presenter
8:00	Optics & Radiomemetrics Subsystem Review	Tony Jalink (Chairman) Roy Esplin (SDL Lead)	Mechanical, Structural & Thermal Subsystem Review	Bob Sherrill (Chairman) Clair Batty (SDL Lead)
11:30	Report - Radiometric & Optical Subsystem Review	Tony Jalink		
11:45	Report - Mechanical, Structural & Thermal Subsystem Review	Bob Sherrill		
12:00	The September 1995.	An _P roperty Lu	nch	
1:00	Calibration Subsystem Reviews	Tony Jalink (Chairman) Joe Tansock (SDL Lead)	Electronics Subsystem Reviews	Tom Shull (Chairman) Mark Jensen (SDL Lead)
4:30	Report - Electronics Subsystem Review	Tom Shull		
4:45	Report - Calibration Subsystem Review	Tony Jalink		
5:00	5:00 Review Action Review			

SABER PDR Agenda, Day Three Thursday, December 12, 1996

Time	Topic	Presenter
8:00	Software Development Plan	Larry Gordley
	Software Quality Assurance	
8:15	Mission Operations	Larry Gordley
	Flight Data Processing Approach	
8:30	Data Retrieval Algorithm Development	Marty Mlynczak
9:00	Product Assurance	John Greco
	Safety	Richard Austin
	Parts Management	
	Configuration Management	
10:00	Bi	eak
10:15	Cost	Jim Miller / Lorin
	Schedule	Zollinger
	Descope Options	36.6
11:15		t Tourse
12:15		meh 1995 Maria kapatan 1994 Maria
1:15	Action Item Review & Committee Feedback	
2:30	Adjourn	

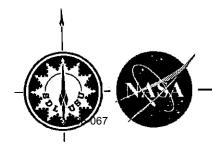
SABER Project Management Overview


James B. Miller

December 10, 1996

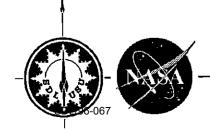
Phone: (757) 864-7101

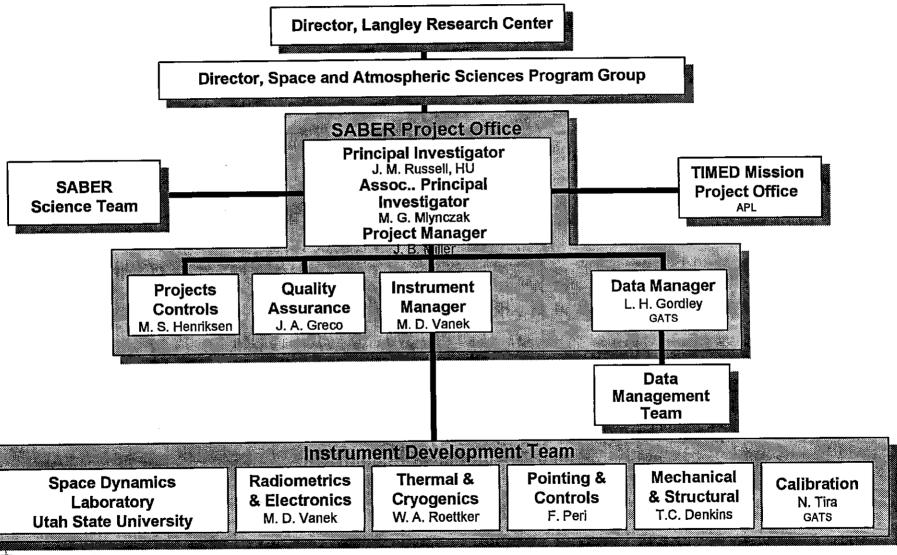
Fax: (757) 864-8818


E-Mail: j.b.miller@larc.nasa.gov

TIMED Mission

Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics

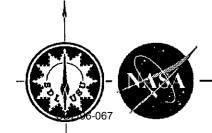

- TIMED is the first mission in the Office of Space Science's Solar Connections Program
- TIMED is a "survey" mission to measure fundamental properties which influence the energy balance of this unexplored region
- Mission Managed by Johns Hopkins University Applied Physics Laboratory (APL)
- "Build-to-Cost" mission
 - \$100M (FY 94) hard cost cap on Phase C/D
 - Instruments, Spacecraft, Ground Segment, & Data Processing Software
- Baseline funding:
 - \$25M authorized in FY 1997
 - FY 1998 funding uncertain

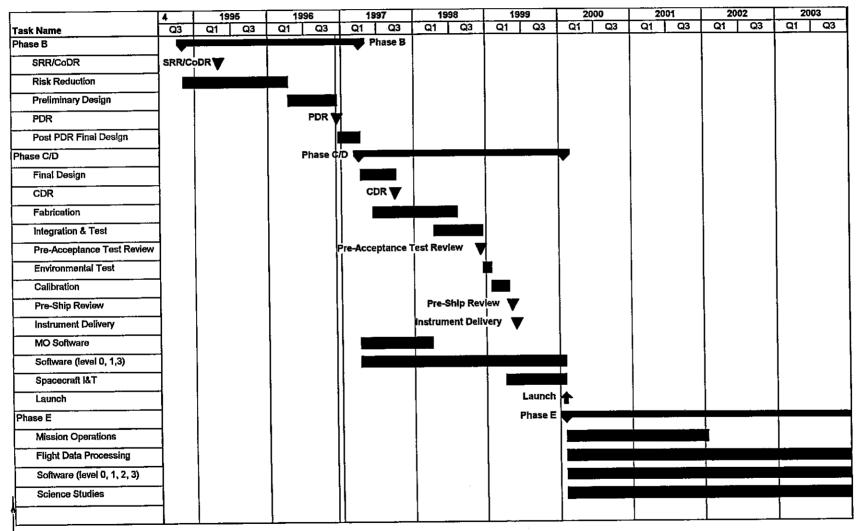

SABER Project

\underline{S} ounding of the \underline{A} tmosphere using \underline{B} roadband \underline{E} mission \underline{R} adiometry

- SABER provides key measurements for the TIMED mission
 - Temperature, Density, Pressure
- The SABER Team includes the combined expertise and experience of:
 - Langley Research Center
 - Hampton University
 - Space Dynamics Laboratory / Utah State University
 - GATS
- SABER Project \$12.8 Phase C/D cost cap in FY 94 dollars
 - \$13.3M in FY95 dollars
- Baseline funding:
 - \$3.6M authorized in FY 1997
 - FY 1998 funding uncertain

SABER Project Organization




SABER Preliminary Design Review

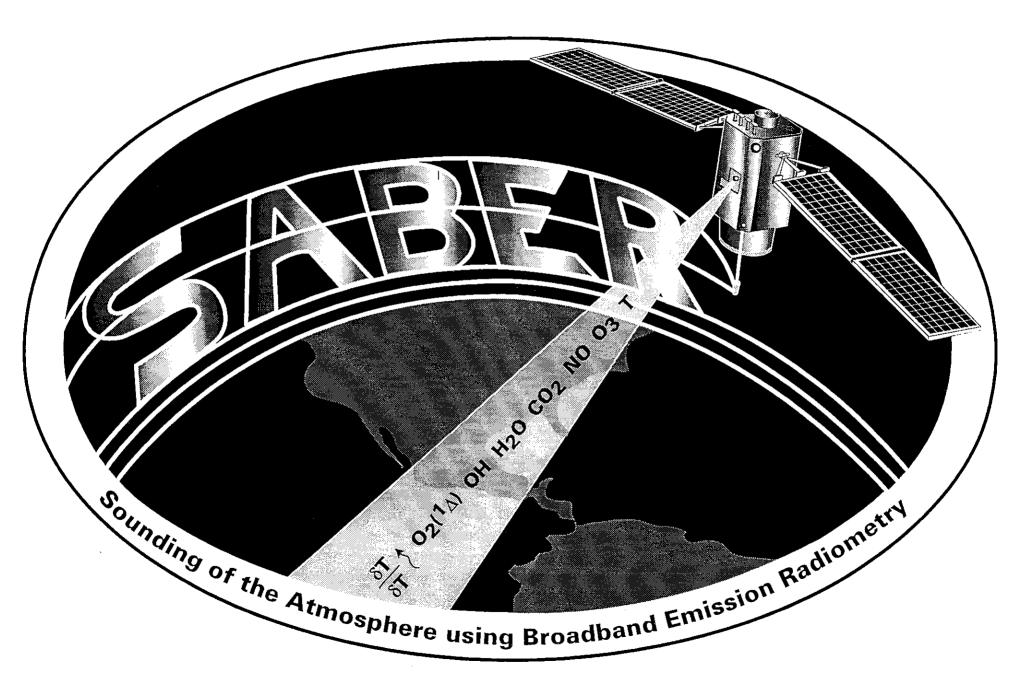
Major Project Milestones

- November 1995 "Slow start" Phase B
- April 1995 Systems Requirements & Conceptual Design Review
- December 1996 Preliminary Design Review
- February 1997 TIMED Non-Advocate Review (tentative)
- April 1997 Phase C/D Authorization
- September/October 1997 Critical Design Review
- December 1998 Pre-Environmental Test Review
- May 1999 Pre-Ship Review
- June 1, 1999 Deliver Instrument to APL
- January 2000 Launch / Begin Mission Operations
- January 2002 Mission Operations Terminated
- January 2002 Delivery of Data Processing Software
- January 2004 Deliver Final Report, Archive Data & Final Software

SABER/TIMED Major Milestone Schedule

SABER Science Overview

Presented at the Preliminary Design Review Meeting


by

James M. Russell III Principal Investigator

and

Martin G. Mlynczak Associate Principal Investigator

December 10, 1996

SABER Scientific Goal and Objectives

Scientific Goal

- To explore the mesosphere and lower thermosphere globally and achieve a major improvement in our understanding of the fundamental processes governing the energetics, chemistry, dynamics, and transport

Scientific Objectives

- Study the M/LT thermal structure and its variations
- Implement studies of energetics and radiatively active species in the non-LTE environment
- Analyze Oy and HOy chemistry
- Conduct dynamics and transport studies

SABER SCIENCE TEAM

PRINCIPAL INVESTIGATOR

James M. Russell III

Hampton University

ASSOCIATE PRINCIPAL INVESTIGATOR

Martin G. Mlynczak

NASA Langley Research Center

CO-INVESTIGATORS

Ellis E. Remsberg

Susan Solomon

Doran J. Baker

Patrick J. Espy

James C. Ulwick

Rolando R. Garcia

Raymond G. Roble

David E. Siskind

Larry L. Gordley

Manuel Lopez-Puertas

Richard Picard

NASA Langley Research Center

NOAA Aeronomy Laboratory

Utah State University

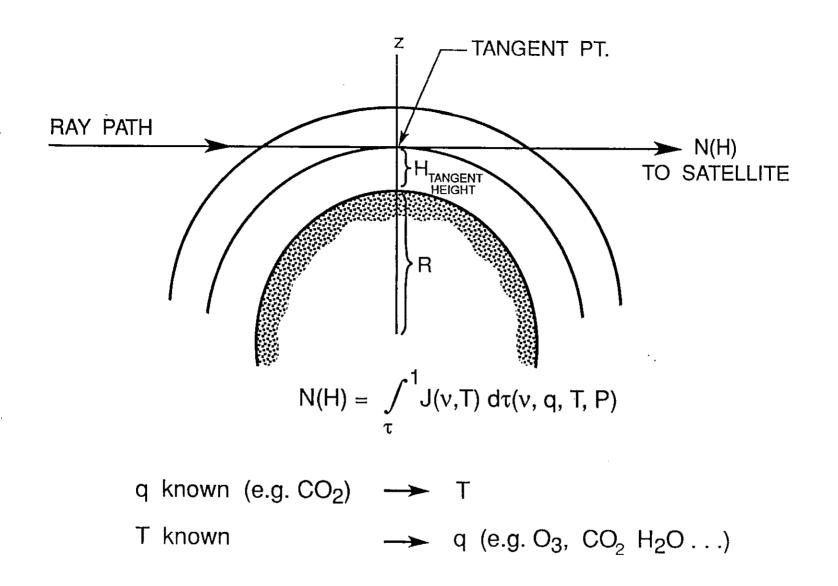
Utah State University

Stewart Radiance Laboratory

NCAR

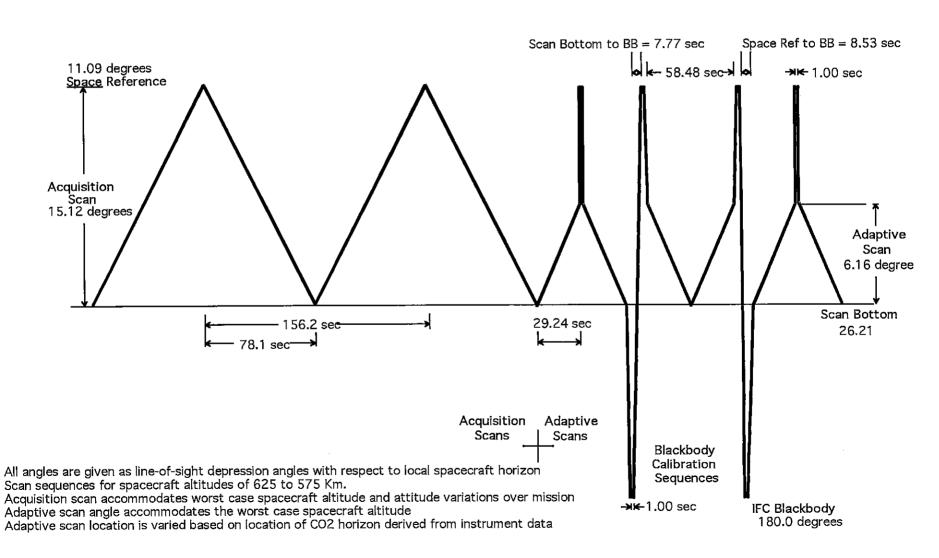
NCAR

Naval Research Laboratory

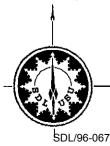

G & A Technical Software

IAA, Spain

Phillips Laboratory


SABER Experiment Approach

- Measurement of earth limb emission in the near and mid-infrared (1.27 16 μ m)
- Employs state-of-the-art mechanical cooling of the focal plane in order to achieve high sensitivity and long experiment life with reduced mass and power
- Provides autonomous pressure registration using CO₂ channels at 15 μm
- Continuous sounding both day and night, permitting diurnal change and polar night studies to be conducted
- Draws on significant spaceflight heritage:
 LIMS, SAMS, HALOE, CIRRIS, ATMOS, CLAES, ISAMS, SME


SABER EMISSION EXPERIMENT GEOMETRY AND INVERSION APPROACH

SABER Limb Scan Sequence (11/25/96 Baseline)

SABER Focal Plane Array Channel Locations

#6 NO 5.40μ CO2 (4.3) OH(A) 2.06μ 4.27μ #8 OH(B)#10 O2 1.27μ 1.62μ 9.39μ CO2-W 14.9μ #4 O3 #3 #2 CO2-W 14.9μ #1 CO2-N 15.2μ #5 H₂O 6.80μ

SABER Measurement Objectives

- Conduct global-scale, simultaneous, vertical profile measurements of temperature, key chemical constituents, and key emission features, including the following:
 - Kinetic Temperature
 - O3, H2O, NO, CO2
 - O2($^{1}\Delta$), OH($^{\circ}$), NO($^{\circ}$), O3($^{\circ}$ 3), CO2($^{\circ}$ 2)
 - Atomic Species O and H (O inferred 4 different ways)
- Conduct measurements (e.g., T, O3, H2O, CO2) that can be used to derive and study dynamical quantities such as geopotential height and potential vorticity
- Conduct measurements of key radiative emissions to study true cooling, e.g., CO₂(v₂), NO(v₂), O₃(v₃), H₂O(v₂)

SABER Inferral of Atomic Species

- Atomic oxygen and hydrogen are crucial to the energetics and chemistry of the mesosphere and lower thermosphere
- SABER will infer atomic species several different ways between
 60 and 135 km, day and night:
 - [O] and [H] from combination of OH(υ = 7,8,9) at 2.0 μ m and O3 at 9.6 μ m (night and day, 80-100 km)
 - [O] from ozone day/night differences using photochemical balance (60-80 km, day)
 - [O] from O₂($^{1}\Delta$) nightglow (80 100 km, night)
 - [O] from CO₂ density and CO₂(15 μ m) emission (100-135 km, day)

SABER Measurement Objectives (Concluded)

- Conduct measurements to derive chemical heating [O3, O2, OH(v)]
- Conduct measurements to derive solar heating [O₃, O₂, CO₂(v₃)]
- Conduct measurements of key emissions that result in the reduction of the solar and chemical heating efficiencies, e.g., $O_2(1\Delta)$, $OH(\upsilon)$, $O_3(v_3)$, $CO_2(v_3)$
- Conduct most detailed study to date of ozone photochemistry in this region (O3, H2O), OH(υ), O, H)

TIMED Scientific Objectives Directly Addressed by SABER

- Objective 1: Determine T, ρ , wind structure and seasonal latitudinal variations
 - SABER measures T, ρ , and derives geostrophic wind both night and day
- Objective 2: Relative importance of various sources and sinks of energy
 - SABER measures true cooling emissions [CO₂(v_2), O₃(v_3), NO(v)] and emissions which reduce solar and chemical heating efficiency [OH(v), O₂($^1\Delta$), O₃(v_3), CO₂(v_3)]
 - SABER determines virtually all of the key measurable diabatic terms in the thermodynamic equation (except solar input provided by SEE, and particle input) and provides information to infer the net dynamical heating
 - Measurements are made night and day

TIMED Scientific Objectives Directly Addressed by SABER (Continued)

- Objective 6: Relative importance of radiative minor species and role of [O]
 - Measures seven key radiative emission features:

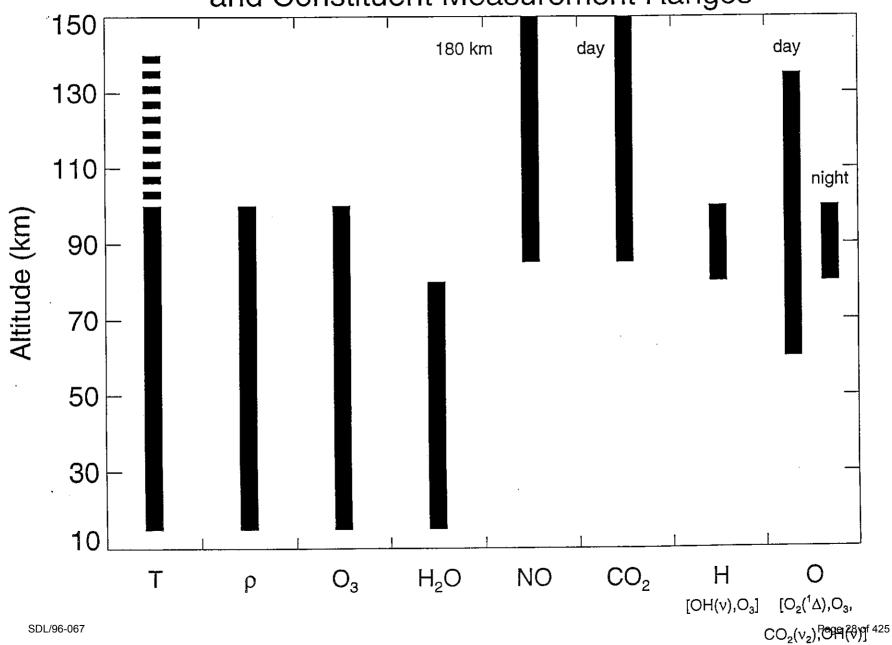
```
CO<sub>2</sub>(15 \mum), O3(9.6 \mum), NO(5.3 \mum), OH(2.0 \mum), OH(1.6 \mum), O<sub>2</sub>(1\Delta) (1.27 \mum), and CO<sub>2</sub>(4.3 \mum)
```

- Provides measurements to infer [O] 4 different ways, covering the range 60-135 km
- Measurements of CO₂ (15 μ m) emission, CO₂ concentrations, and inferred [O] will allow the role of [O] in enhancing cooling to be inferred

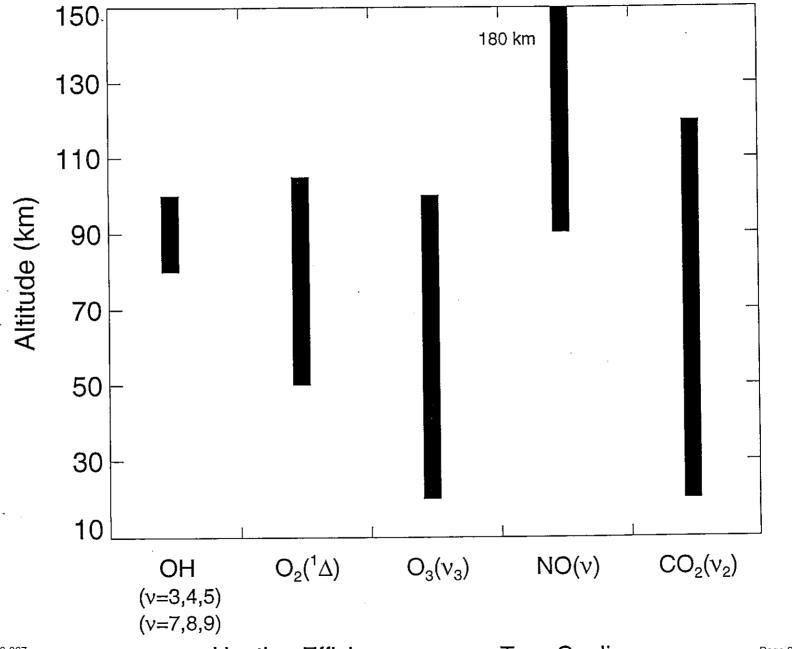
TIMED Scientific Objectives Directly Addressed by SABER (Continued)

- Objective 8: Spatial and temporal variations of Ox, HO_X, NO_y species
- Makes measurements globally, night and day of key members in each chemical family (O₃, H₂O, NO) and the main carbon budget molecule CO₂

TIMED Scientific Objectives Supported by SABER Observations

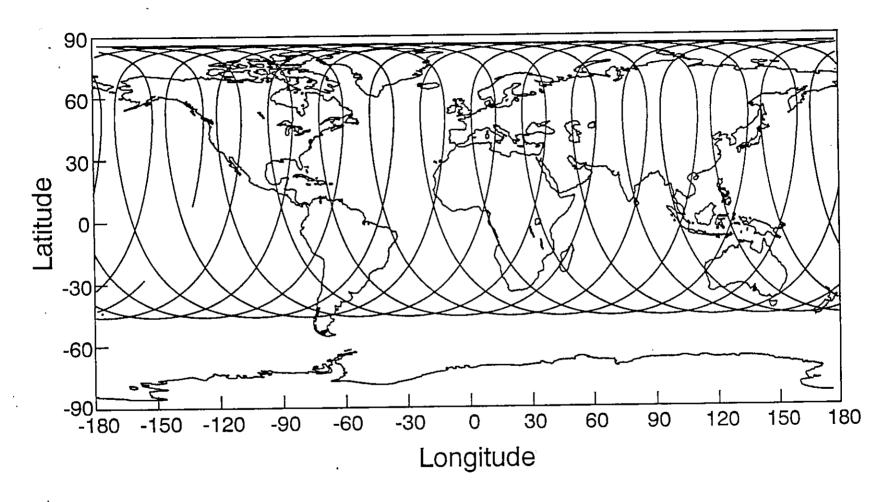

- Objectives 3, 4, and 5: Related to sources and variability of gravity and planetary waves; global mean tidal structure; interactions among tidal, gravity, and planetary waves
 - The one spacecraft SABER mission, supports these objectives by:
 - Providing temperature and constituent observations over the full altitude range from the gravity wave source to energy deposition regions
 - Making tracer observations (H₂O, CO₂) to allow study of vertical transport
 - Making day and night observations which provides sampling of all local times twice per season

SABER Measurements and Applications*

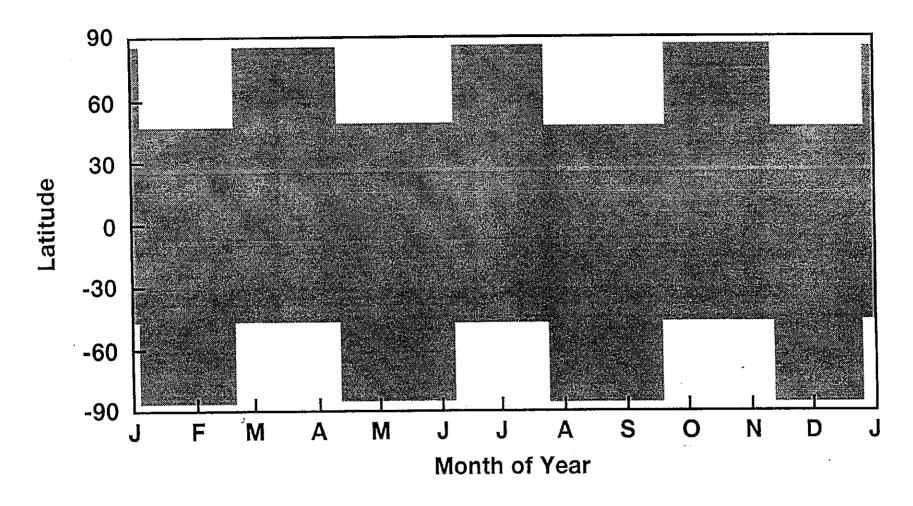

Parameter	Wavelength (µm)	Geophysical Information/Application	Altitude Range (km)
CO ₂	15	Kinetic temperature and density; infrared cooling rates; altitude/pressure registration, non-LTE/LTE nature of CO ₂ . T uncertainty due to non-LTE is large for Z >100 km	10-130
О3	9.6	Ozone concentration; cooling rates; solar heating rates; fundamental chemistry and dynamics studies	15-100
Ο2(¹ Δ)	1.27	O3 concentration (daytime); energy loss for solar heating efficiency; inferred [O] at night	50-105
CO ₂	4.3	CO ₂ concentration ; upper mesospheric solar heating; dynamical tracer above ≈ 90 km	85-150
OH(v)	2.0 1.6	Fundamental chemistry/chemical heat source emission used to infer [H], [O] Chemiluminescent energy loss; dynamics/wave studies; polar mesospheric cloud studies	80-100
NO	5.3	Thermospheric cooling; dynamical tracer; NO _X chemistry	90-180
H ₂ O	6.9	Odd-hydrogen source gas; dynamical tracer	15-80

^{*2.2} km IFOV at the limb and ~ 300 km horizontal resolution along the limb track

Saber Single Profile Day/Night Temperature and Constituent Measurement Ranges

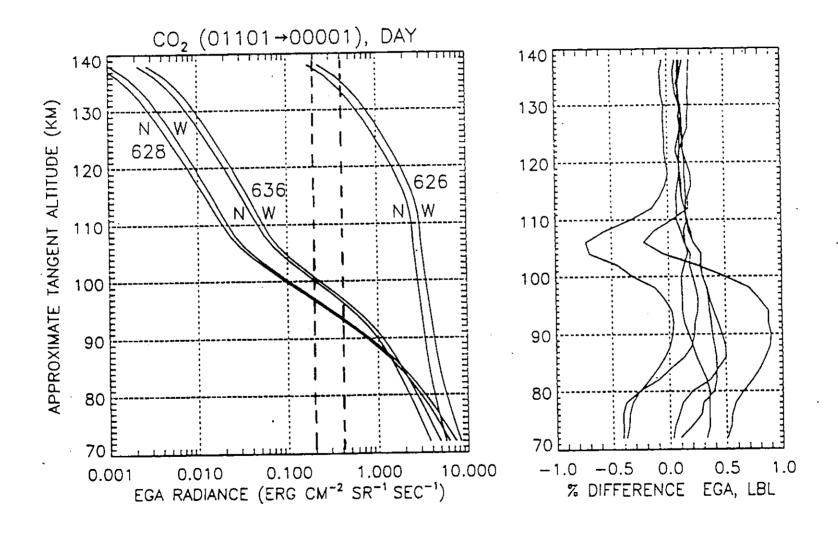


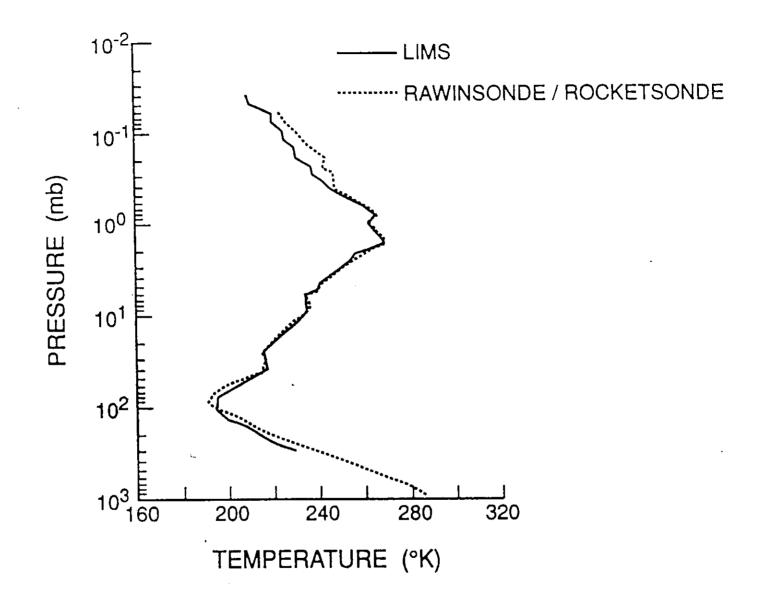
SDL/96-067

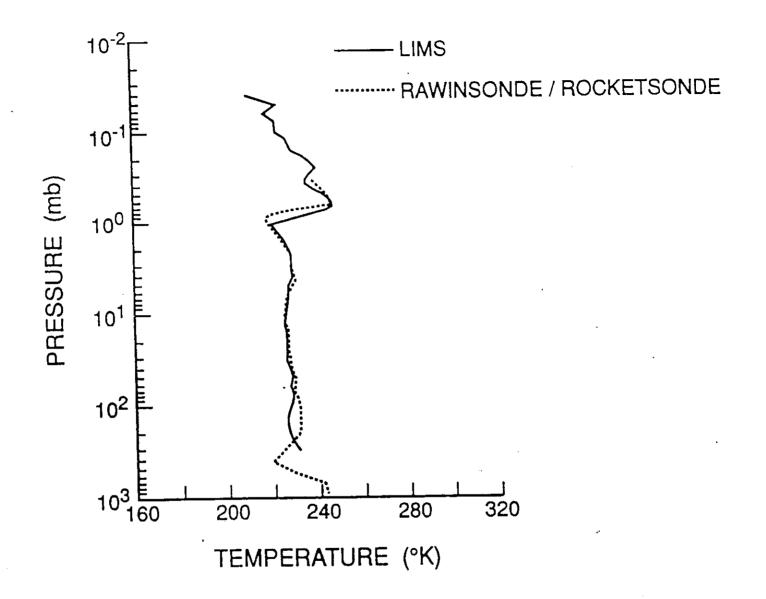

Heating Efficiency

True Cooling

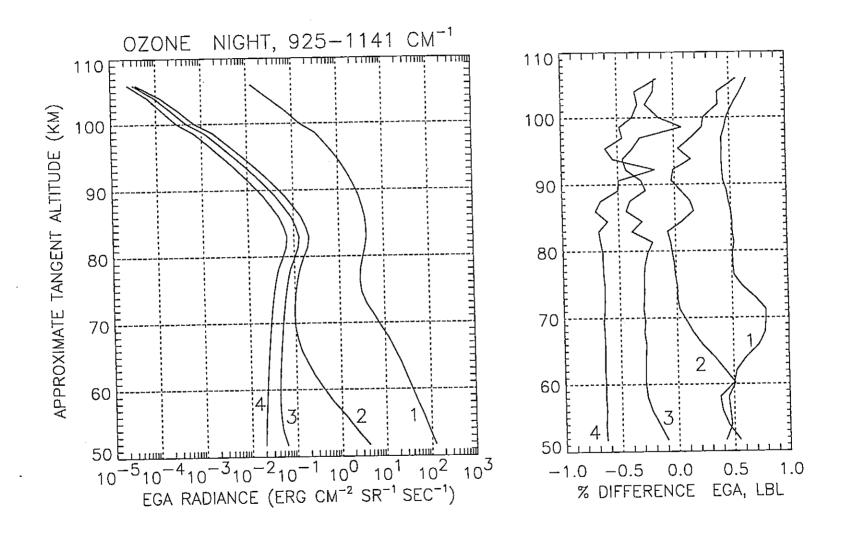
Page 29 of 425

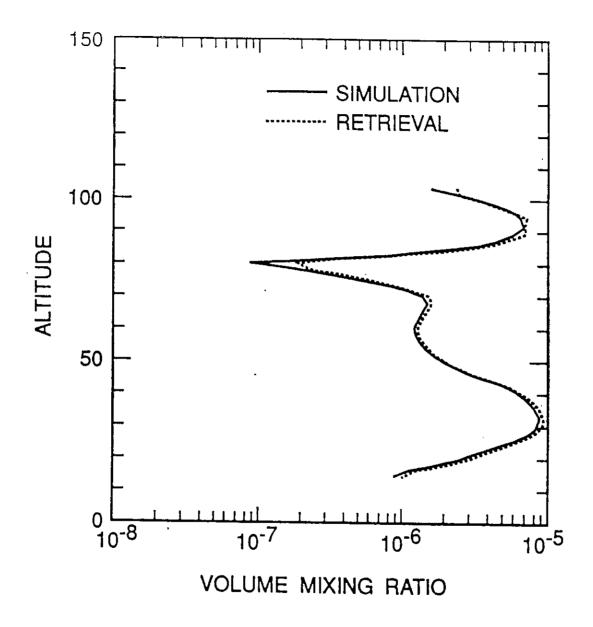



SABER daily latitude versus longitude coverage viewing North for a 70°, 600 km orbit.

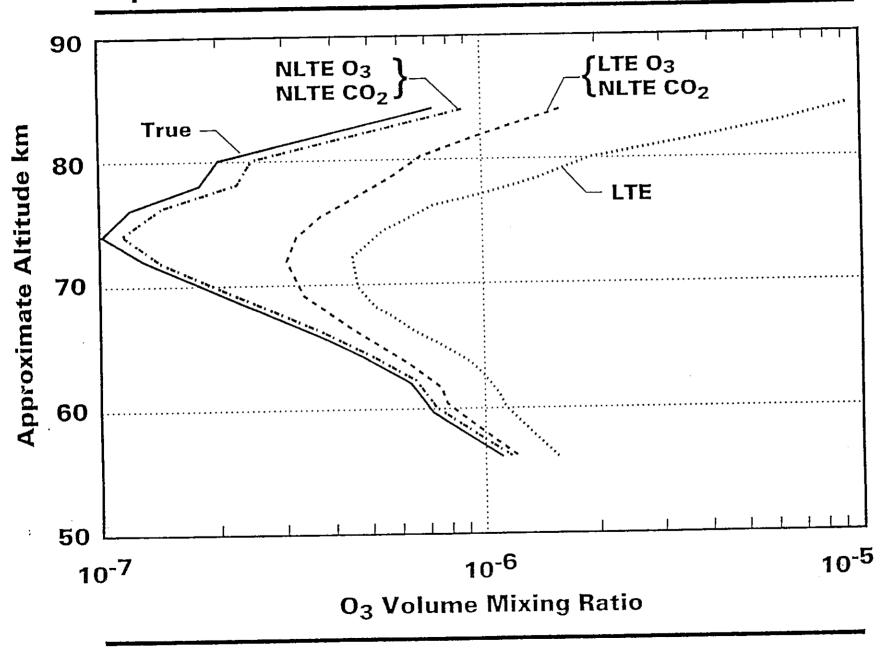

SABER latitude coverage versus time for a 70°, 600 km orbit

SABER CO₂ 15µm Wide and Narrow Channel Radiances for the Fundamental and Isotopic Bands




LIMS DAYTIME TEMPERATURE RETRIEVAL COMPARED TO RAWINSONDE / ROCKETSONDE RESULTS AT 18°N, 300°E ON JANUARY 10, 1979

LIMS DAYTIME TEMPERATURE RETRIEVAL COMPARED TO RAWINSONDE / ROCKETSONDE RESULTS AT 59°N, 273°E ON FEBRUARY 2, 1979


Ozone (9.6 μ m) Radiance, Night, Fundamental and Hot Bands

SABER SIMULATED O_3 (9.6) μ m) RETRIEVAL

SABER Temperature and Constituent Estimated Accuracies and Precisions

Parameter	Measurement Range	Accuracy	Precision
Temperature	10-130 km	1.5K, 15-80 km 4.0K, 80-100km	0.5K, 15-70 km 1.0K, 70-80 km 2.0K, 80-100 km
O3 (9.6μm)*	15-100 km	20%, 15-90 km 30%, 90-100 km	≤5%, 15-70 km 20%, 70-90 km
O3 [from O2(¹ Δ)]**	50-105 km	20%, 50-105 km	10%, 50-85 km 15%, 85-105 km
H ₂ O	15-80 km	20%, 15-70 km 30%, 70-80 km	10%, 20-70 km 25%, 70-80 km
NO+	90-180 km	30%, 90-150 km	10%, 90-150 km
CO2++	85-150 km	30%, 95-140 km	10%, 95-140 km

^{*} Nightime accuracy estimates. Daytime accuracy degrades due to Non-LTE

^{**} Daytime measurement only. Under twilight conditions accuracy degrades due to difference in chemical lifetime of O₃ and radiative lifetime of O₂($^1\Delta$)

⁺ Assumes [O] is known to 25% accuracy

⁺⁺ Daytime measurement only

SABER Energy Loss Rate Per Unit Volume Estimated Accuracy and Precision*

Parameter	Measurement Range	Accuracy	Precision
ΟΗ (ν)	80-100 km	3%, 80-90 km 5%, 90-100km	0.1%, 80-90 km 5%, 90-100 km
Ο2(1Δ)	50-105 km	3%, 50-90 km	0.05%, 50-70 km 0.2%, 70-80 km 1.0%, 80-90 km
O3(v3)	20-100 km	3%, 50-90 km	0.05%, 50-70 km 0.1%, 70-90 km
CO ₂ (v ₂)	20-120 km	3%, 90-120 km	1%, 80-120 km
NO (v)	90-180 km	5%, 100-170 km	3%, 100-150 km 5%, 150-170 km

SABER Experiment Summary

- Provides measurements of the temperature and density of the core region globally including seasonal and latitudinal changes
- Measures all radiative emission features important in the energy budget including the true cooling emissions [CO2(v2), NO(v), O3(v3)] and key emissions which reduce efficiency of solar and chemical heating [O2($^1\Delta$), OH(v), CO2(v3), O3(v3)]
- The primary chemical constituents in the lower portion of the core region will be observed globally including O3, H2O, CO2, and NO (requires [O]). [O] will be inferred four different ways and [H] one way
- The measurement set includes tracer molecules H2O and CO2 which will provide important data on horizontal and vertical motion for study of coupling between atmospheric regions

SABER Experiment Summary (Concluded)

- Continuous day and night observations will be made of temperature, constituents, and energetics
- Observations will cover a broad altitude range which includes the gravity wave source region in the stratosphere, the altitude range where gravity wave energy is deposited, and the lower thermosphere
- Experiment directly address 4 of the 9 highest priority TIMED science objectives (1, 2, 6, 8) and provides supporting data for study of 3 others (3, 4, 5)
- T(P) and all other profiles are measured with high vertical resolution (2.2 km IFOV) and independently of spacecraft attitude and attitude rate information

SABER Science Measurement Requirements

Parameter	Measurement Requirements
Spectral Resolution	Broadband radiometer, 45 to 700 cm-1, depending upon channel
Filter Characteristics	See Table
System Noise Equivalent Radiance (NEN)	See Table
Flight Data Calibration	Systematic errors shall not exceed the following after all calibration corrections are applied:
Radiometric Accuracy Long Term Radiometric Precision Radiance Bias Drift Residual Scale Error	5.0% absolute radiance; 3% Goal* 2.0% radiance precision; 1% Goal* ≤ 1 NEN between space looks ≤ 1% linearity over dynamic range*
IFOV @ 60 km Earth limb tangent height	2 km FWHM
Limb Scan Mirror Jitter	3 arcsec (1σ)
Limb Vertical Sampling Interval	0.4 km
Along-Measurement-Track Latitude Resolution	< 5°
Focal Plane Channel Location	See Figure
Limb Vertical Scan Angle Range	See Table
Measurement Altitude Range	10 km to 180 km

^{*} For SNR>100, % is defined as a percentage of the signal. For SNR≤100, % is defined as a percent of the signal that produces a SNR=100.

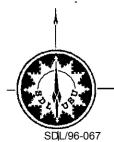
SDL/96-067

SABER Channel Spectral Response

Channel	Species	Center Wavelength (cm ⁻¹)	Spectral Bandpass (cm ⁻¹)	Filter 5% Rel.Trans Limits (cm ⁻¹)	Filter Out of Band Rejection Ratio	System NEN [†] w-cm ⁻² -sr ⁻¹	Dynamic Range
1	CO ₂ (N)	650	45	635 - 680	10 ⁻⁴	17.5 x 10 ⁻⁹	≥18985
2	CO ₂ (W)	670	80	580 - 760	10 ⁻⁴	28.0 x 10 ⁻⁹	≥71749
	CO ₂ (W)	670	80	580 - 760	10 ⁻⁴	28.0 x 10 ⁻⁹	≥71749
4	O ₃	1065	110	1010 - 1140	10 ⁻⁴	11.2 x 10 ⁻⁹	≥46908
5	H₂O	1470	180	1380 - 1560	10 ⁻⁴	3.73 x 10 ⁻⁹	≥85234
6	NO	1850	150	1775 - 1925	10 ⁻⁴	2.49 x 10 ⁻⁹	≥30745
- } 	CO ₂ (B)	2360	80	2320 - 2400	10 ⁻⁴	1.32 x 10 ^{.9}	≥7632
_	OH (A)	4850	700	4500 - 5200	10 ⁻⁴	0.47 x 10 ⁻⁹	≥850
9	OH (B)	6088	695	5740 - 6435	10 ⁻⁴	0.70 x 10 ⁻⁹	≥360
10	O ₂	7850	240	7730 - 7970	10 ⁻⁴	0.70 x 10 ⁻⁹	≥14300

⁺ For 0.110 second integration time.

Note: Hi-lited values indicate changes made since PDR (12/19/96).



Scan Angle Requirements

Scan Angle	Scan Range
Maximum Depression Angle	Angle required to place the top edge of the FPA at a tangent altitude 3 km below the horizon.
Minimum Depression Angle	Angle required to place the bottom edge of the FPA at a tangent altitude of 400 km.

Focal Plane Array Channel Locations

#6 NO	5.40μ	
#7 CO2 (4.3) 4.27µ	#8 OH (A)	2.06µ
#9 OH (B) 1.62μ	#10 O2	1.27μ
#4 O3 9.39µ	#3 CO2-W	14.9μ
#2 CO2-W 14.9µ	#1 CO2-N	15.2μ
#5 H2O	6.80µ	

SABER INSTRUMENT OVERVIEW

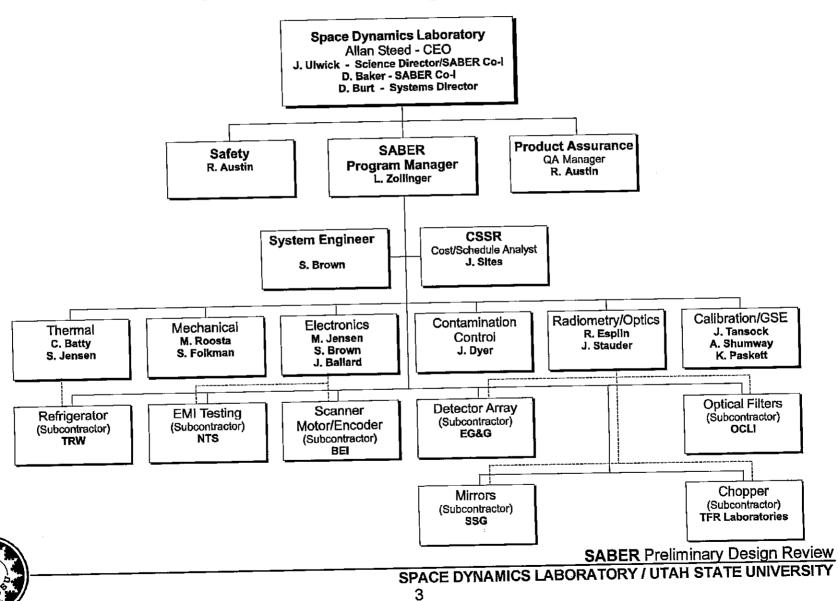
Lorin Zollinger

December 10, 1996

Phone: (801) 755-4275

Fax: (801 755-4299

E-Mail: lorin.zollinger@sdl.usu.edu



Instrument Overview Outline

- **SDL SABER Organization**
- Instrument Requirements
- **Baseline Changes**
- **Instrument Overview**
- Risk Management

SDL/USU SABER Organization Chart

INSTRUMENT REQUIREMENTS

Requirements Preface

- Instrument requirements shown in the next 3 charts remain unchanged from the SRR/CoDR with the exception that minor spectral changes to two channels is in work
- Instrument/spacecraft requirement shown in the last 4 charts include requirements
 which flow from the instrument to the spacecraft and from the spacecraft to the
 instrument
- Instrument/spacecraft interface has evolved since the SRR/CoDR
 - Thermal inteface is simpler and thermal control independent of the spacecraft
 - Mechanical interface has evolved and provides simpler and stiffer mount
 - Interfaces are defined in the draft interface documents which are evolving
 - Last 4 slides represent a snap shot of the present configuration of the instrument and its interface with the spacecraft

Parameter	Measurement Requirement
Spectral Resolution	Broadband radiometer, 45, 80, 110, 140, 150, 180, 240, and 700 cm ⁻¹ , depending upon channel
Flight Data Calibration:	Systematic errors shall not exceed the following after all calibration corrections are applied.
Radiometric Accuracy Long Term Radiometric Precision Radiance Bias Drift Residual Scale Error	5.0% absolute radiance; 3% Goal* 2.0% radiance precision; 1% Goal* ≤1 NEN between space looks ≤1% linearity over dynamic range*
IFOV @ 60 km Earth limb tangent height	2 km FWHM
Limb Scan Mirror Jitter	3 arcsec (1σ)
Limb Vertical Sampling Interval	0.4 km
Along-Measurement-Track Latitude Resolution	≤5°
Measurement Altitude Range	10 km to 180 km

^{*} For SNR >100, % is defined as a percentage of the signal. For SNR ≤100, % is defined as a percent of the signal that produces a SNR=100.

SABER Channel Spectral Response

Channel	Species	Center Wavelength (cm ⁻¹)	Spectral Bandpass (cm ⁻¹)	Filter 5% Rel.Trans Limits (cm ⁻¹)	Filter Out of Band Rejection Ratio	System NEN [†] w-cm ⁻² -sr ⁻¹	Dynamic Range
1	CO ₂ (N)	650	45	635 - 680	10 ⁻⁴	17.5 x 10 ⁻⁹	≥18985
2	CO ₂ (W)	670	80	580 - 760	10 ⁻⁴	28.0 x 10 ⁻⁹	≥71749
3	CO ₂ (W)	670	80	580 - 760	10⁻⁴	28.0 x 10 ⁻⁹	≥71749
4	O ₃	1065	110	1010 - 1140	10 ⁻⁴	11.2 x 10 ⁻⁹	≥46908
5	H₂O	1470	180	1380 - 1560	10 ⁻⁴	3.73 x 10 ⁻⁹	≥85234
6	NO	1850	150	1775 - 1925	10 ⁻⁴	2.49 x 10 ⁻⁹	≥30745
7	CO ₂ (B)	2360	80	2320 - 2400	10 ⁻⁴	1.32 x 10 ⁻⁹	≥7632
8	OH (A)	4850	700	4500 - 5200	10 ⁻⁴	0.47 x 10 ⁻⁹	≥850
9	OH (B)	6088	695	5740 - 6435	10 ⁻⁴	0.70 x 10 ⁻⁹	≥360
10	O ₂	7850	240	7730 - 7970	10⁻⁴	0.70 x 10 ⁻⁹	≥14300

* For 0.110 second integration time.

Note: Hi-lited values indicate changes made since PDR (12/19/96).

Scan Angle Requirements

Scan Angle	Scan Range
Maximum Depression Angle	Angle required to place the top edge of the FPA at a tangent altitude 3 km below the horizon.
Minimum Depression Angle	Angle required to place the bottom edge of the FPA at a tangent altitude of 400 km.

Focal Plane Array Channel Locations

#6	NO	5.40μm	
#7 CO2 (4.3) 4	27μm	#8 OH (A)	2.06µm
#9 OH (B) 1	.62µm	#10 O2	1.27μm
#4 O3 9	.39µm	#3 CO2-W	14.9μm
#2 CO2-W 1	4.9μm	#1 CO2-N	15.2μm
#5	5 H2O	6.80µm	

Instrument/Spacecraft Requirements 1 of 4

Parameter	Value	<u>Units</u>
Mechanical Requirements: Envelope Dimensions Baseplate/Ref & Elec Radiator Footprint Optics Radiator Dimensions Total Weight Center of Gravity Pointing Direction Boresight Alignment Knowledge Optical Clear Fields of View Thermal Clear Fields of View Limit Loads Minimum Frequency	77.47 W x 103.13 H x 60.45D 77.47 W x 61.91 H 49.61 W x 37.34 H 61.7 1.81(x), 18.08(y), 39.99(z) 90° Off-Ram, On-Limb, Anti-Sun 0.02 29 horizontal, 23 vertical top, 54 vertical bottom Full Hemisphere 16 > 80 Thrust Axis, > 50 Lateral Axis	cm cm kg cm deg deg G's Hz
Thermal Requirements: Interface Conductance	20	deg C/w
Cleanliness Requirements: Cleanliness Levels for S/C Integration S/C Surface Cleanliness Purge Gas Purge Rate	Class 100,000 Level 750 N2 boil off gas from liquid LN2 0.4	SCFM

Instrument/Spacecraft Requirements 2 of 4

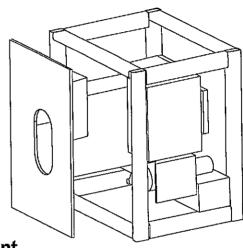
Parameter	Value	<u>Units</u>
Attitude and Navigational Requirements:		
Orbit Altitude	600	km
Orbit Inclination	74.4	deg
Pointing Control	1.0	deg
Pointing Knowledge	0.1	deg
Jitter (includes mirror jitter)	f < 0.5 Hz, jitter increases as 1/f	
atter (morados minos justos)	0.5 Hz < f < 10 Hz, jitter = 0.005 (goal of 0.001)	deg
	f > 10 Hz, jitter = 0.028	deg
Stability:		
In Scan Plane	0.0075	deg/sec
In Planes Orthogonal to Scan	0.025	deg/sec
Position Knowledge:		
Altitude	300	m
Along Track and Cross Track	1000	m
Velocity Knowledge	3	m/s
Keep out Zones	Keep sun from clear fields of view, avoid	
100p out 201100	long-term exposure of aperture to ram.	
Perturbing Mechanisms		
Scan Mirror	1.0 x 10-4 (TBR)	N-m-se
Refrigerator Compressor	0.02	lbf
Optical Chopper	0.002	lbf
Z Frank Greek at		

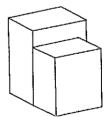

Instrument/Spacecraft Requirements 3 of 4

Parameter	Value	<u>Units</u>	
Command & Data Handling Requirements:			
Modes of Operation	Off, Power-up, Safe, Stand-by, Stabilize,		
	Calibration, Data Collection, Diagnostic		
Peak Data Rate for each Mode of Operation:			
off	0	kbits/sec	
Power-up	0.08	kbits/sec	
Safe	0.08	kbits/sec	
Stand-by	0.08	kbits/sec	
Stabilize	0.08	kbits/sec	
Calibration	3.97	kbits/sec	
Data Collection	3.97	kbits/sec	
Diagnostic	3.97	kbits/sec	
Command Uplink Rate	2	kbytes/da	
Duty Cycle	100	%	
Time Knowledge	0.1	sec	
Special Data Needs	sun angle knowledge		
S/C data interface	MIL-STD-1553		

Instrument/Spacecraft Requirements 4 of 4

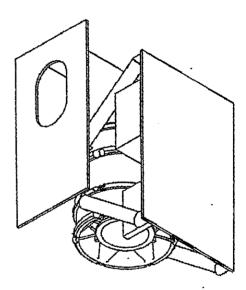
Parameter	<u>Value</u>		Units
Power Requirements: Average & Peak Power for each Mode of Operation off Power-up Safe Stand-by Stabilize Calibration Data Collection Diagnostic	Ave. 0 36.9 36.9 60.5 60.5 64.0 64.0	Peak 0 36.9 36.9 60.5 60.5 74.0 74.0	watts watts watts watts watts watts watts watts watts
Voltage Range Special Requirements For:	28 ±6	volts	
Integration and Test	Full functional test requires vacuum test chamber with LN2 for cooling chamber.		
Mission Operations Safety EMC	door re none none	elease attitude	




BASELINE CHANGES

Baseline Configuration at SRR/CoDR

- Baseline configuration at SRR/CoDR as shown at right
- Telescope was an unobscured high off axis rejection design
 - All reflective front end with a lens reimager
 - Cold Lyot stop
 - Each channel focused by adjusting filter thickness
 - 2 IFC Blackbodies and flip-in mirror
- Frame/baseplate mounted to +X spacecraft panel
- Telescope view through +Y panel
- 2 of 4 electronics boxes mounted remotely from instrument

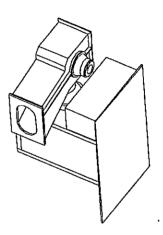


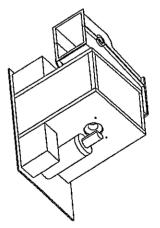
Rebaselined Telescope Design

Change Driven By:

 Achieving focus by adjusting filter thickness was impractical because of the wide spectral range required

- Telescope design consisting of a Cassegrain front end followed by a clam shell reimager
- This design eliminated the lens which:
 - · Solved the focus problem
 - Increased transmission no broadband lens coating
 - lowered thermal background less emmision from mirrors than lens
- Simpler more rugged telescope design cylindrical tube design
- improved filter frame assembly filters the same thickness
- Eliminated flip in mirror & one IFC blackbody

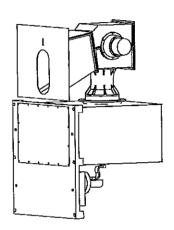


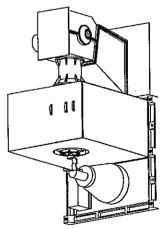

Telescope Temperature Increased to 240 K

Change Driven By:

- Complex scan mirror design driven by thermal considerations
 - 180-210 K telescope temperature, 233 K encoder minimum
 - Bearing/Lube design/Friction/Preload/Life/Thermal conduction
- Concern over Kevlar tension support of telescope

- Reduced risk/concern about motor/encoder lubricant and thermal gradients
- Reduced size, weight and complexity of optics radiator
- Allowed a composite "box" support system which provided stiffer design and eliminated tension supports on telescope

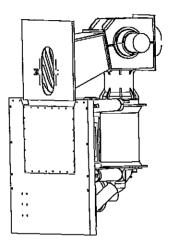


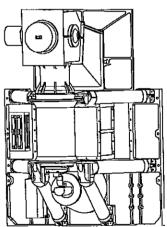

Baselined Y Panel Mount & Single Instrument Electronics Box

Change Driven By:

- Need to provide greater thermal capacity for the cooler
- Need to provide a workable thermal/mechanical S/C interface
- Provide a stiff cooler mount

- Significantly simpler thermal and mechanical S/C interface
- Ability to compensate for thermal uncertainties
- Provided stiffer cooler mount
- Provided better packaging of electronics Reduced volume and provided easier access

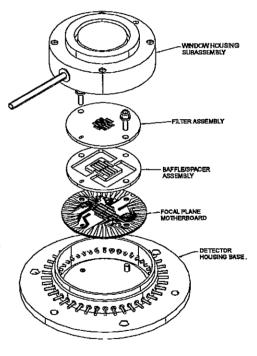



Telescope Support Structure Change

Change Driven By:

- Spacecraft increase in first mode structural resonance requirement from 70 Hz to 80 Hz for instruments and spacecraft subsystems
- Increased baseplate width about 6" to "pick-up" spacecraft structure

- Adding tubular G-10 struts from baseplate to the composite box and telescope to stiffen the baseline composite box design and meet the new 80 Hz requirement
- A trade study which determined that the struts were doing the most of the "work," would provide sufficient thermal isolation of the telescope and that the expensive composite box was not required structurally



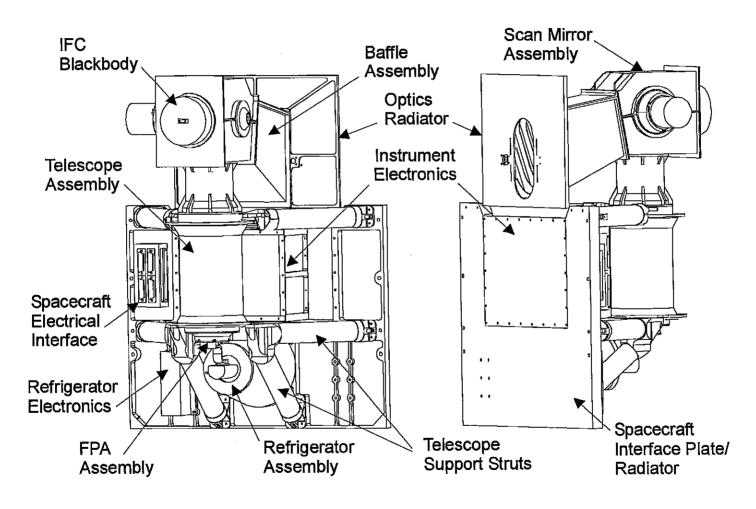
Baselined a Sealed FPA Package Backfilled with Inert Gas

Change Driven By:

 HgCdTe detector characteristics change when exposed to humidity

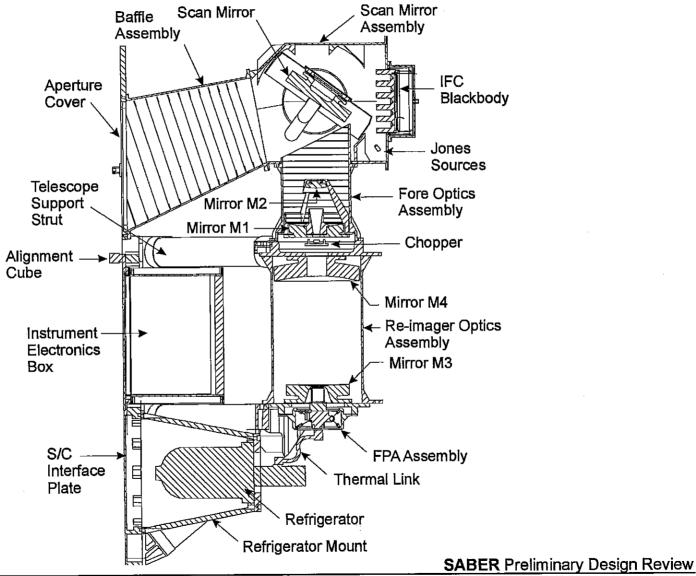

- consideration of four options
 - Sealed package with baked-out detectors then backfilled with inert gas
 - Sealed evacuated package with baked-out detectors
 - Vented package with baked-out detectors, controlled handling and environment
 - Use of detectors which are not enhanced by bake-out process
- Baselined option 1 which was felt to have the lowest overall risk/uncertainty
- Option 1 is EG&G Judson's recommendation similar packaging has flight history
- Option 1 has significant technical issue KBr window to package seal

Other Baseline Changes since SRR/CoDR


- Requirement to View Hard Earth Added
 - Requirement clarification resulted in dynamic range design change for 7 channels
- Compression
 - Data compression eliminated, APL agreed to support the higher 4K bit/sec data rate

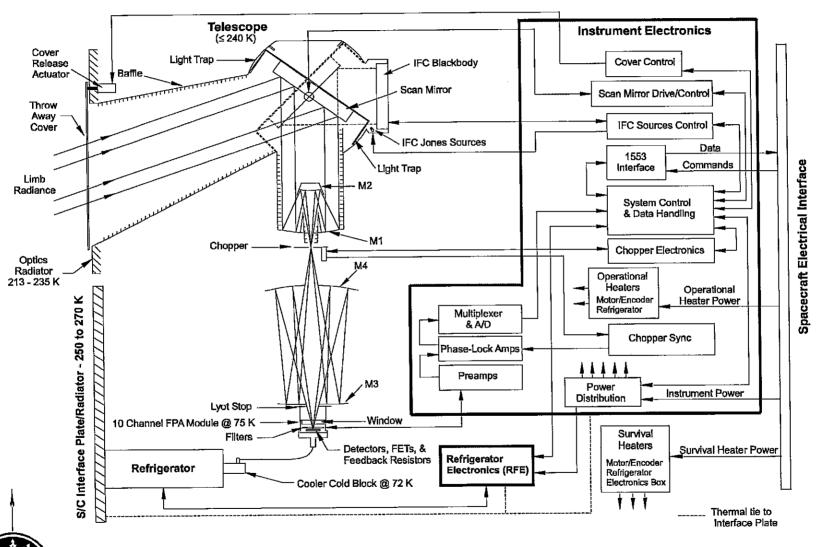
INSTRUMENT OVERVIEW

SABER Instrument Configuration



SABER Preliminary Design Review

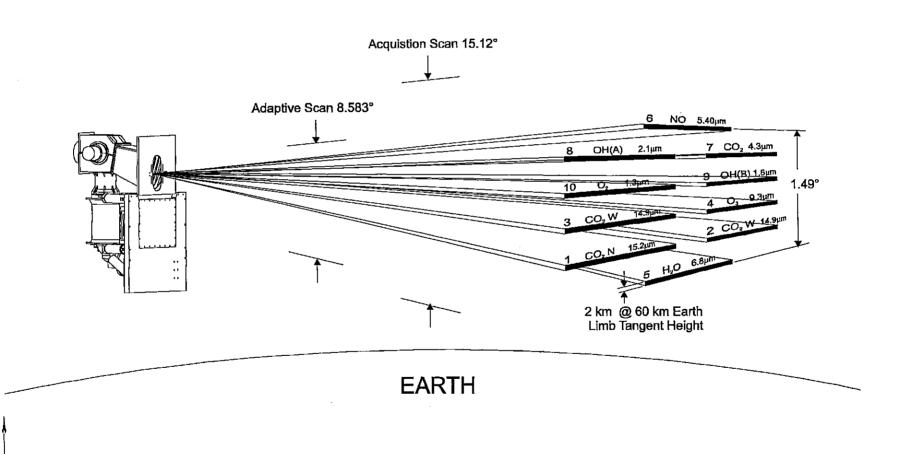
SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY


SABER Instrument Cut-Away View

SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

23

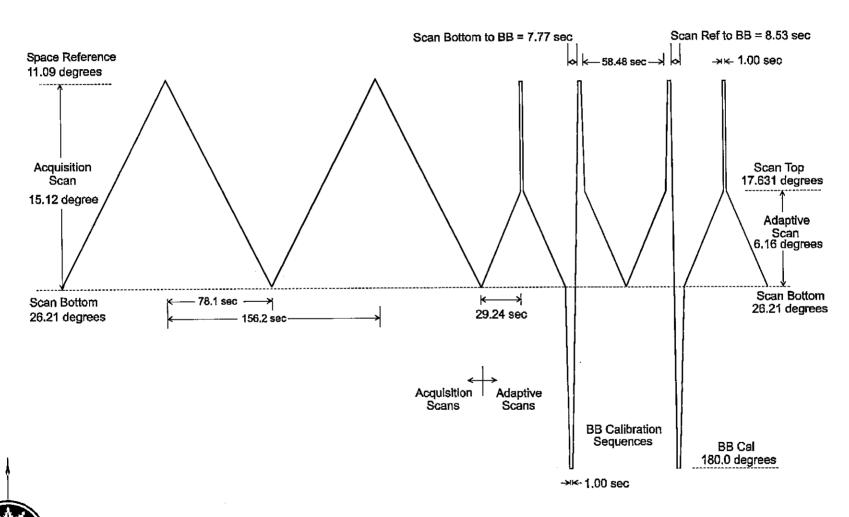
SABER Functional Block Diagram



SABER Preliminary Design Review

SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

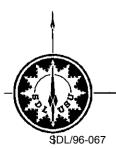
24


SABER Field of View

SABER Preliminary Design Review
SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

25

SABER Limb Scan Sequence



RISK MANAGEMENT

Identified Risks

- Microminiature Detector/Filter Assembly Risks
- InGaAs Detector Risk
- Chopper Development Risk
- FPA Support Assembly Risks
- Refrigerator Risks
- Refrigerator to FPA Thermal Link Risks
- Calibration GSE Blackbody
- Funding Profile

Detector / Filter Assembly Risk Reduction

Risk Description:

- Mechanical interface between the detector assembly and the filter frame assembly is complex and requires close tolerances
- This assembly consists of two expensive, long lead items and a problem with the integration of these assemblies could have a major impact to the cost & schedule
- Performance of HgCdTe detectors degrade when exposed to atmospheric water

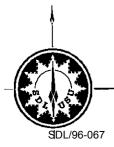
- EG&G and OCLI will prototype the detector and filter frame assemblies
- EG&G will integrate and test the completed package
- EG&G is currently performing a KBr window seal evaluation
- EG&G is also performing a HgCdTe detector passivation study to evaluate the effectiveness of a deposited CdTe film to protect the detectors from atmospheric water

InGaAs Detector Risk Reduction

Risk Description:

- Two channels will use a new technology, long wavelength, InGaAs detector
- Limited data is available for these detectors

- EG&G is currently performing space application environment testing of 2.6 micron cutoff wavelength InGaAs detectors to determine if performance issues exist
- EG&G will fabricate and test as part of the detector assembly prototype the InGaAs detector for channel 8

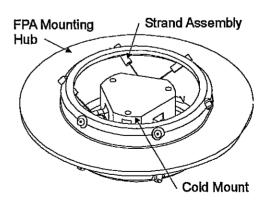


Chopper Risk Reduction

Risk Description:

- SABER subcontract for chopper is with TFR only known supplier with flight history
- Company expertise resides with owner who is beyond retirement age

- Preliminary Design is complete and chopper breadboard near completion
- TFR has agreed to share with SDL the critical design and fabrication techniques needed to fabricate the chopper if TFR could not build the prototype or flight units
- TFR contract options will be exercised to perform final design, prototype fabrication and fabrication of up to 3 flight units as soon as funding is available


FPA Support Assembly Risk Reduction

Risk Description:

- Alignment stability and thermal performance of the kevlar FPA support system is unproven
- Kevlar support system is a relatively new technology

• Risk Mitigation:

- Two breadboards of the kevlar support system have been built and tested
- First breadboard tests showed support system will meet the structural and thermal requirements
- First breadboard testing also verified kevlar manufactures material properties data
 - · Creep and ultimate strength characteristics verified
 - · Same lot of Kevlar material tested will be used for flight support system
- Second higher fidelity breadboard tested with and without a TRW refrigerator
 - Results show that the support system meets
 SABER's thermal requirements
- Testing in progress to verify alignment stability

SABER Preliminary Design Review

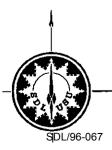
SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY 32

Refrigerator Risk Reduction

· Risk Description:

- Baselined TRW refrigerator has not been qualified to the structural levels required by the TIMED mission and qualification may be cost prohibitive
- Refrigerator performance at the SABER operating conditions is uncertain
- Vibration caused by the refrigerator could cause the FPA or telescope to vibrate

- SDL has conducted searches for alternate suppliers of a refrigerator which would meet the SABER requirements but to date TRW still comes closest to meeting all the requirements
- An interface to the spacecraft has been agreed to which provides SABER with a rigid mounting configuration and minimizes amplification of launch vibrations to the cooler mount
- Continuing to monitor the expected launch loads and will consider vibration isolation if the loads exceed the refrigerators capacity
- Performed inhouse testing with TRW refrigerator on loan from USAF Phillips Lab one
 of two coollers that successfully completed 17,000 Hr. of life testing
- Test results shows the refrigerator when operated at 273 K has sufficient capacity at to cool the FPA to its operational temperature of 75 K
- USAF Phillips Lab has agreed to conduct performance tests at SABER operational conditions on early TRW production units



FPA Thermal Link Risk Reduction

Risk Description:

 thermal link must have good thermal conduction and yet be sufficiently flexible to prevent transmitting refrigerator vibrations to the FPA

- Thermal link has been prototyped and tested
- Link exceeds both thermal conductivity and vibration isolation requirements

Calibration Blackbody Risk Reduction

Risk Description:

New, complicated, large (8 inch), high temperature (620 K) blackbody development

- Mica Heaters Breadboard: Heaters have been operated in a vacuum above anticipated watt densities and temperatures without failure
- Optical Black Surfaces: Tested Enhanced Martin Black under the blackbody operating conditions.
- Outgassing: Outgassing of mica heaters is under investigation. Past operation has shown an initial high outgassing rate which diminishes greatly during bakeout.
- High Temperature wire: High temperature wire has been proven to operate in a vacuum at high temperatures without trouble. Wire heat sink potting methods have also been tested.
- PRTs: Have identified designs for the two required styles of PRTs, are building and testing these PRT designs for self-heating in a vacuum, hysteresis and resistance drift. This is a major factor in the success of the blackbody
- Segment control system breadboard: Plan to breadboard the blackbody control system. Control software and electrical hardware will operate a single segment heater assembly in a vacuum.
- Will conduct study following PDR to look at alternatives to this blackbody

Funding Profile Risk Reduction

• Risk Description:

- Most recent FY 1997 funding profile still only adequate when prorated for 3/4 year
- FY 1998 funding uncertain
- Limited funding level delays cooler, flight FPA, and mirror contracts until FY 1998
- Subcontract procurements are on critical path
- Subcontract costs potentially higher due to stringing out funding/work

- Contracts to be tailored to expected funding profile
- Contracts will have a series of costed options which can be executed when funds are available
- Identify subcontractor long lead items which could be procured early to reduce subcontractors schedule

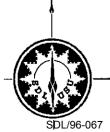
RADIOMETRIC & OPTICAL SUBSYSTEM OVERVIEW

Roy Esplin

Phone: (801) 755-4385

Fax: (801) 755-4444

E-Mail: roy.esplin@sdl.usu.edu


John Stauder

Phone: (801) 755-4388

Fax: (801) 755-4444

E-Mail: john.stauder@sdl.usu.edu

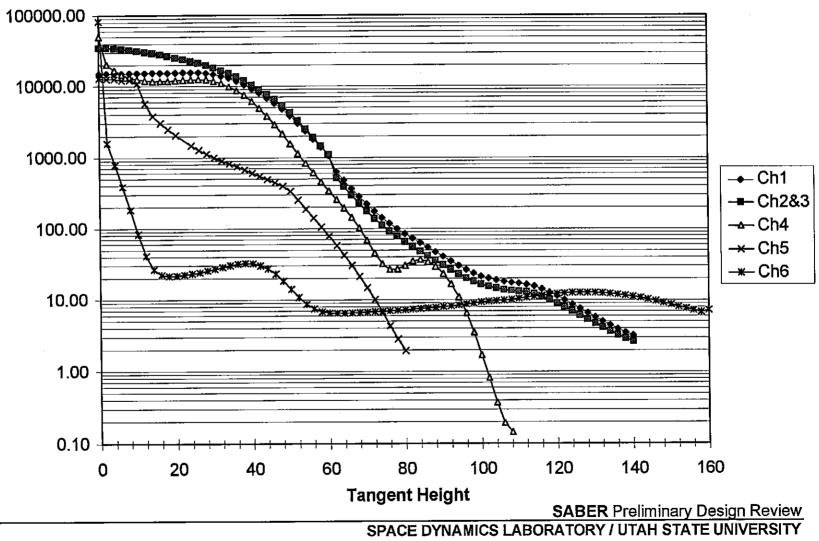
December 10, 1996

OUTLINE

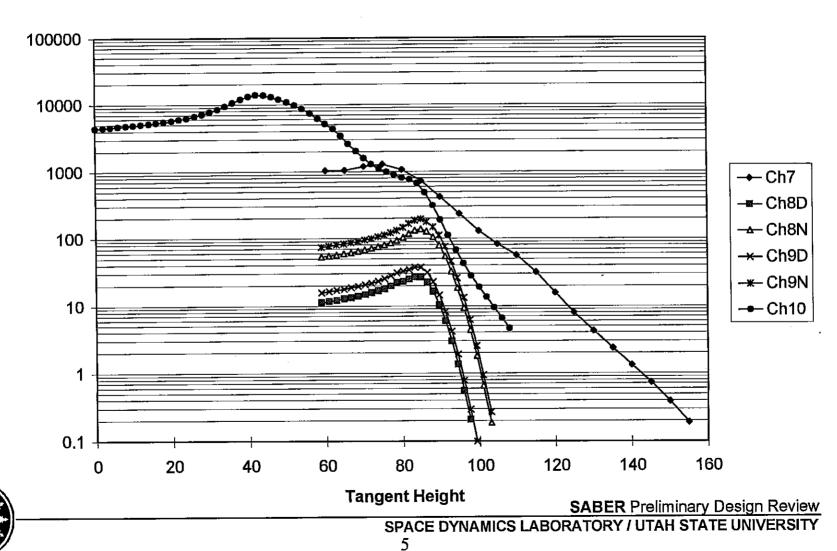
- Requirements and Design Performance of Radiometric Subsystem
- **Top-Level Design Description**
- **Telescope**
 - Ray Trace and key optical parameters
 - System MTF and Telescope Tolerance Budget
 - Straylight Performance
- **Detector Assembly**
 - **Mechanical Configuration**
 - **Detector Performance**
 - Filter Performance
- Conclusion

NOISE EQUIVALENT RADIANCE (NER) & DYNAMIC RANGE REQUIREMENTS

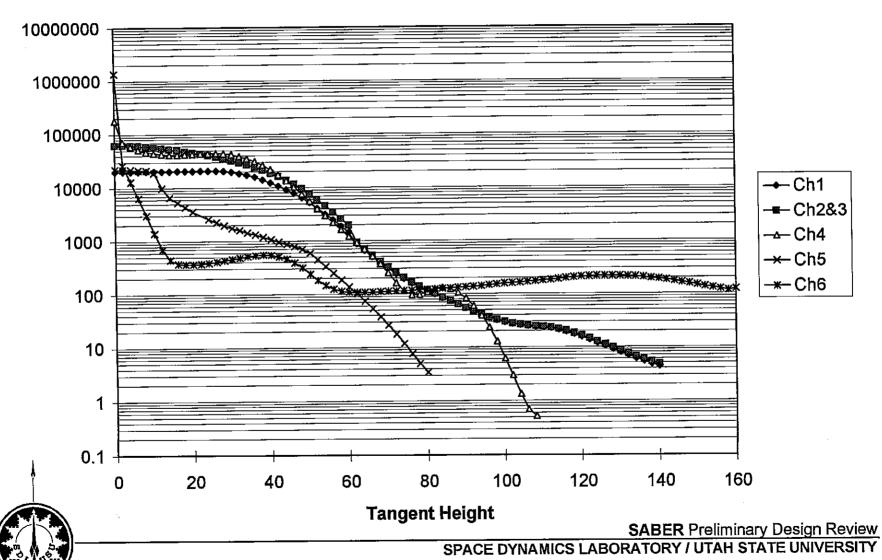
Channel Number	Noise Eq. Radiance (NER) * ** (Wcm ⁻² sr ⁻¹)			Dynamic Range		
Trainiot	Requirement	Design	Req./Design.	Science Req.	Earth View Req.	Design
1	1.75E-8	1.29E-8	1.36	5700	19572	> 19572
2 & 3	2.80E-8	1.56E-8	1.79	21400	73968	> 73968
4	1.12E-8	3.13E-9	3.58	13400	59401	> 59401
5	3.73E-9	2.12E-9	1.76	2150	87419	> 87419
6	2.49E-9	1.49E-10	16.74	10	31372	> 31372
7	1.32E-9	1.24E-10	10.62	1000	7868	> 7868
8	4.70E-10	2.54E-10	1.85	850	6	> 850
9	7.00E-10	3.23E-10	2.17	360	0	> 360
10	7.00E-10	3.72E-10	1.88	14300	0	> 14300

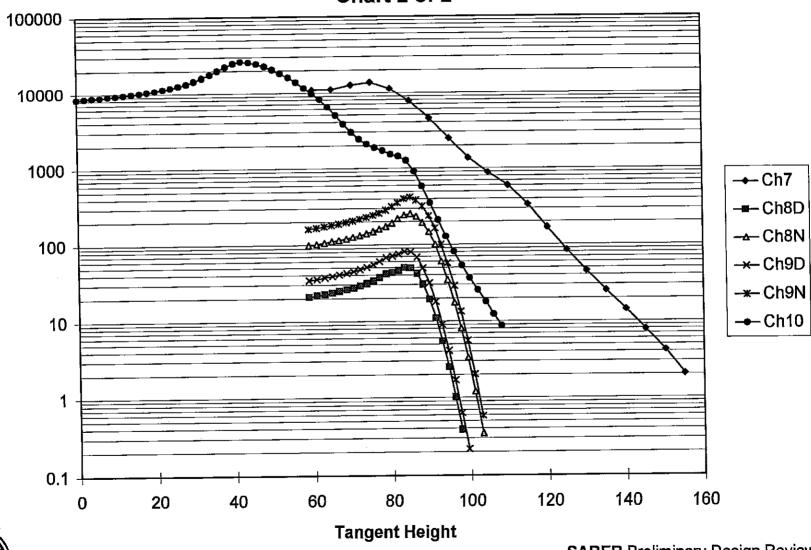

^{*}For 0.110 integration time T (Noise Equivalent Electrical Bandwidth = 1/2T =4.545 Hz)

SABER Preliminary Design Review


SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

^{**}Assuming minimum values for filter transmission, detector D* and responsivity


(LIMB RADIANCE) / (REQUIRED NER) Chart 1 of 2


(LIMB RADIANCE) / (REQUIRED NER) Chart 2 of 2

(LIMB RADIANCE) / (DESIGN NER) Chart 1 of 2

(LIMB RADIANCE) / (DESIGN NER) Chart 2 of 2

SABER Preliminary Design Review
SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

FILTER SPECTRAL BANDWIDTH REQUIREMENTS

Channel	Species	5% Transmission Cut-On Point (cm ⁻¹)			5% Transmission Cut-Off Point (cm ⁻¹)		
		Requirement	Spec.	Design	Requirement	Spec.	Design
1	CO ₂ (N)	680 (14.71 μm)	680 ± 3	681.7	635 (15.75 μm)	635 ± 3	632.9
2	CO ₂ (W)	760 (13.16 μm)	760 ± 4	758.5	580 (17.24 μm)	580 ± 3	581.2
3	CO ₂ (W)	760 (13.16 μm)	760 ± 4	758.5	580 (17.24 μm)	580 ± 3	581.2
4	O ₃	1140 (8.77 μm)	1140 ± 11	1138.5	1010 (9.90 μm)	1010 ± 10	1011.1
5	H ₂ O	1560 (6.41 μm)	1560 ± 16	1564.0	1380 (7.25 μm)	1380 ± 14	1376.7
6	NO	1925 (5.19 μm)	1925 ± 19	1941.9	1775 (5.63 μm)	1775 ± 18	1761.6
7	CO ₂ (B)	2410 (4.15 μm)	2410 ± 24	2413.9	2270 (4.41 μm)	2270 ± 23	2271.9
8	OH (A)	5200 (1.92 μm)	5200 ± 52	5184.8	4500 (2.22 μm)	4500 ± 45	4516.5
9	OH (B)	6500 (1.54 μm)	6500 ± 65	6495.2	5800 (1.72 μm)	5800 ± 58	5813.3
10	O ₂	7970 (1.25 μm)	7970 ± 16	7973.8	7730 (1.29 μm)	7730 ± 15	7728.6

FILTER SLOPE REQUIREMENTS

Channel Number.	Cut-or	Slope	Cut-off Slope (%) *		
	Spec.	Design	Spec.	Design	
1	≤ 3.0	1.09	≤ 2.9	1.19	
2 & 3	≤ 2.4	1.50	≤ 2.9	1.39	
4	≤ 2.4	1.05	≤ 2.9	1.21	
5	≤ 2.6	1.02	≤ 2.9	1.07	
6	≤ 2.0	1.24	≤ 2.0	1.37	
7	≤ 2.0	0.68	≤ 2.0	0.72	
8	≤ 2.5	0.86	≤ 2.5	1.45	
9	≤ 2.5	0.84	≤ 2.5	0.84	
10	≤ 2.5	0.78	≤ 2.5	0.81	

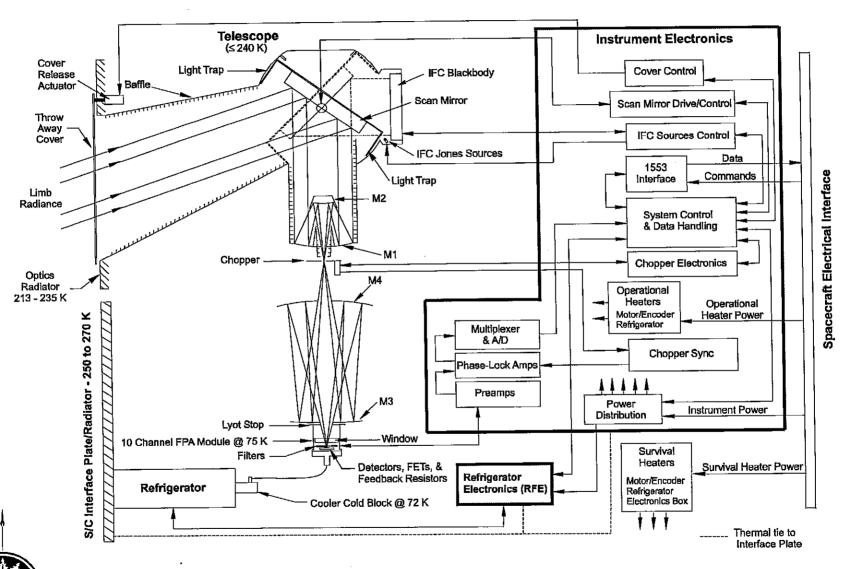
^{* %} Slope \equiv ((λ 80% of peak - λ 5% absolute)/ λ 5% absolute) x 100%

FILTER OUT OF BAND REJECTION REQUIREMENTS*

Channel Number	Out-of-Ba	Long Wavelength Blocking Limit (µm)		
	Req.	Design ***	Req.	Design
1	≤ 0.01	0.00051 below band 0.022 above band	22.4	22.4
2 & 3	≤ 0.1	< 0.05	24.4	24.4
4	≤ 0.05	< 0.001	15.5	15.5
5	≤ 0.01	< 0.001	12.5	12.5
6	≤ 0.01	< 0.001	10.0	10.0
7	≤ 0.01	< 0.001	10.0	10.0
8	≤ 0.01	< 0.001	6.0	6.0
9	≤ 0.01	< 0.001	6.0	6.0
10	≤ 0.01	< 0.001	5.0	5.0

^{*} Given a well-behaved detector roll-off on the long wavelength side

^{***} Design does not include Stierwalt effect, which degrades out-of-band blocking when filters close to detectors. OCLI experience has shown margins on filter numbers 2 to 10 adequate to compensate for Stierwalt effect.


^{**} Average In-Band Transmittance calculated between half power points

MISCELLANEOUS REQUIREMENTS

Parameter	Requirement	Design	
Focal plane channel locations	IRD Figure 3	IRD Figure 3	
Instantaneous Field of View (IFOV) at 60 km tangent height	2 km Full Width at Half Maximum (FWHM)	1.88 FWHM	
System Modulation Transfer Fuction (MTF) at 0.25 cyles/km	≥ 0.5 channels 4 through 10	Design ≥ 0.546 Design+(Static and Dynamic Error Budgets) ≥ 0.528	
Maximum Depression Angle	Angle required to place top edge of FPA at a tangent altitude 3 km below the horizon. (Scanner line of sight (LOS) depression angle 26.214°)	Top edge of the top detector (detector 6) has a clear view through the baffle when the scanner LOS depression angle is 26.214°	
Minimum Depression Angle	Angle required to place bottom edge of FPA at a tangent altitude of 400 km (Scanner LOS depression angle equals 11.097°)	Bottom edge of bottom detector has a clear view through the baffle when the scanner LOS depression angle is 11.097°	
Radiance Bias Drift	≤1 NER betweeen space looks	≤ 1 NER betweeen space looks	

SABER FUNCTIONAL DIAGRAM

SABER Preliminary Design Review

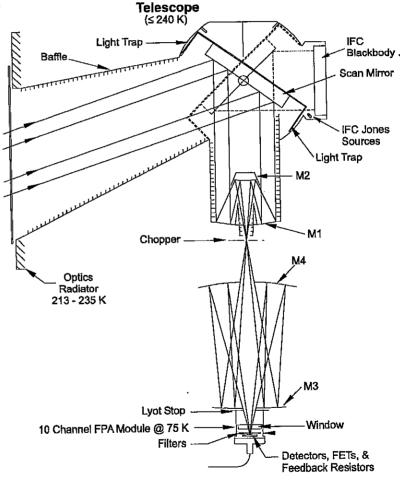
SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

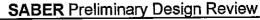
RADIOMETRIC SUBSYSTEM

Telescope

- On-Axis Cassegrain with clamshell reimager
- Cold Lyot stop
- Low scatter super polished mirrors by SSG

Detector Assembly

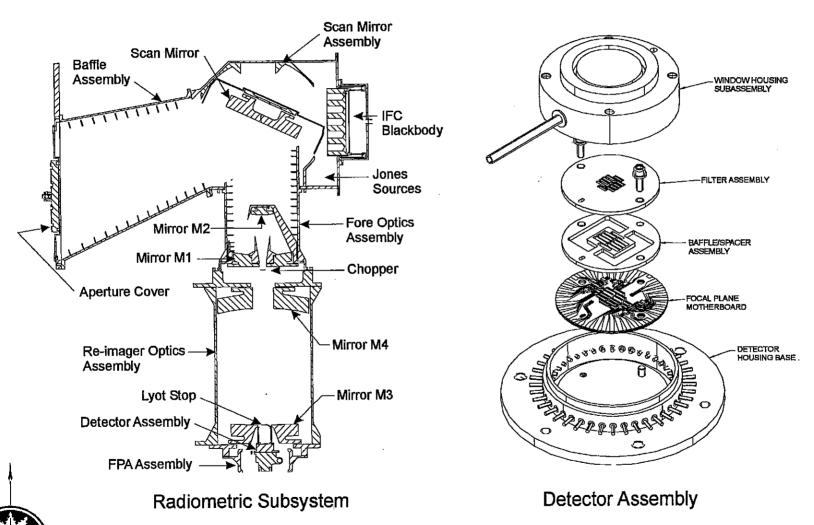

- Filters
 - 10 miniature filters in a common frame
 - Subcontractor: OCLI
- Detectors
 - 5 HgCdTe, 2 InSb, 3 InGaAs
 - Subcontractor: EG&G, Judson


In Flight Calibration (IFC) Sources

- Described in calibration presentation
- Fuil aperture black body
- Two Tungsten Lamp Jones Sources

Chopper

- 1000 Hz tuning fork
- 10 hole "picket fence" shutters
- Efficiency 0.446
- Subcontractor: TFR



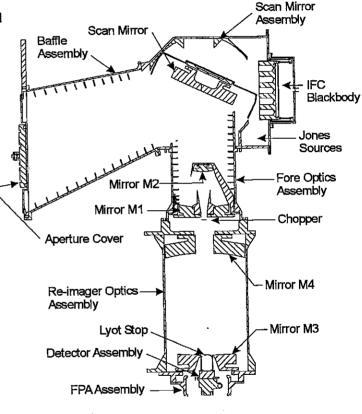
SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

RADIOMETRIC SUBSYSTEM IMPLEMENTATION

SABER Preliminary Design Review

SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

TELESCOPE


 Mirrors thermally cycled 6061 aluminum plated with nickel for super polishing then plated with gold

Telescope structure thermally cycled 6061 aluminum

Telescope nearly insensitive to uniform temperature changes

 Reflective optical system all made from the same materially simply scale with uniform temperature changes

- Everything aluminum except
 - Nickel plating on mirrors
 - Very thin bimetalic stress balanced by coating front and back
 - Detector assembly
 - Temperature controlled by cooler
 - Kevlar FPA support
 - Length short
- Residual errors compensated by focusing SABER at nominal operating temperature
- High thermal conductance and symmetry of mirrors and spacers minimize thermal gradient errors

TELESCOPE RAY TRACE AND OPTICAL PARAMETERS

Focal Length: 200 mm

F-Number: 2

Entrance Pupil Diameter: 100 mm

Central Obscuration Diameter: 52 mm (27% area)

Primary Mirror M3

- Radius: 225.00 mm concave

Conic constant: -1.15149 (Hyperbola)

Secondary Mirror M4

Radius: 120 mm convex

Conic constant -6.62063 (Hyperbola)

Tertiary Mirror M3

- Radius: 1050 mm concave

Conic constant -60.08293 (Hyperbola)

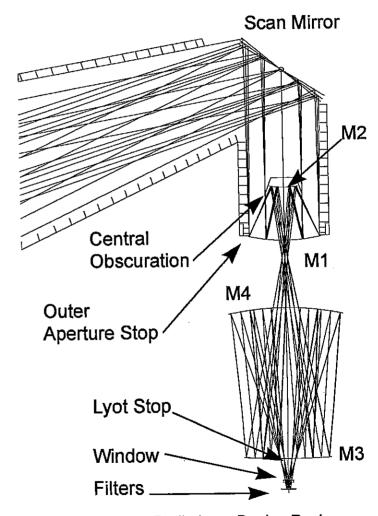
Quaternary Mirror M4

Radius: 384.41 mm

Conic constant : .39100 (Oblate ellipse)

Spacings

Scan Mirror to M1: 241.402 mm

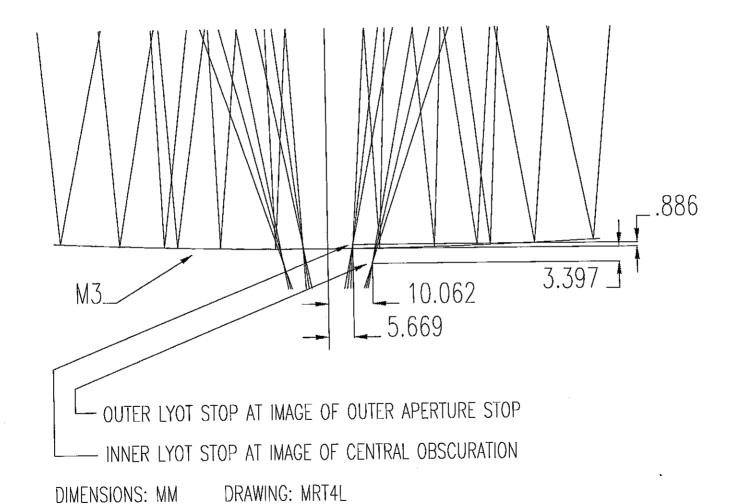

M1 to M2: 75.00 0 mm

M2 to M3: 380.000 mm

M3 to M4: 210.000 mm

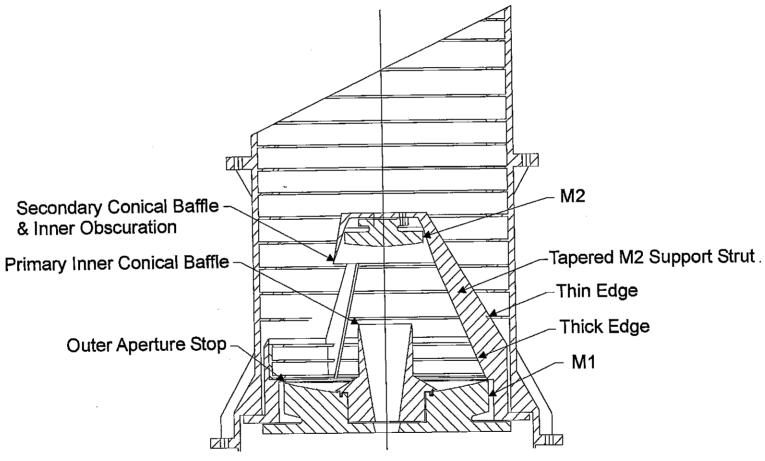
M4 to Window: 240.337 mm

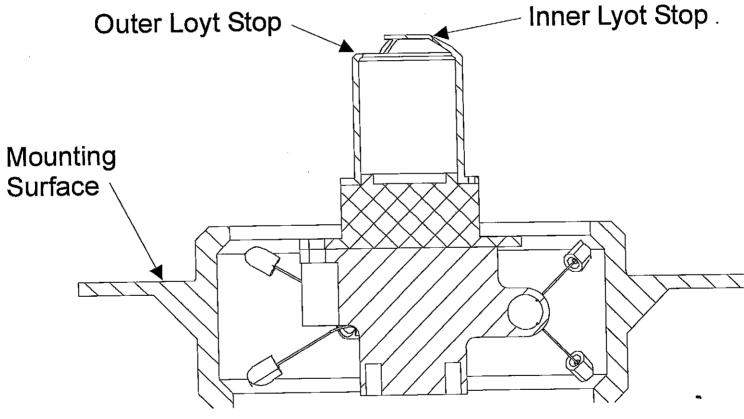
KBr Window thickness: 3mm



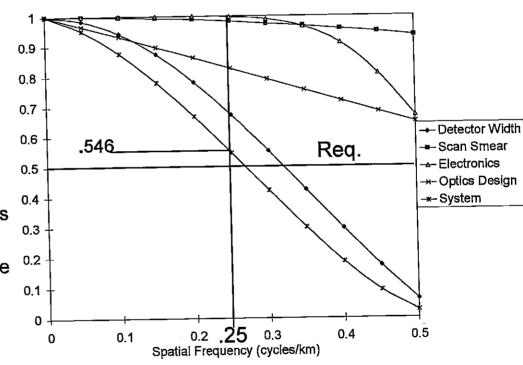
SABER Preliminary Design Review

SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY


LYOT STOP LOCATION

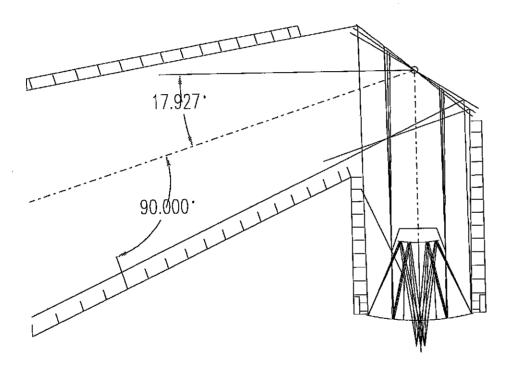

SABER Preliminary Design Review
SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

FORE OPTICS ASSEMBLY


FPA ASSEMBLY

CHANNEL 4 SYSTEM MTF AND OPTICAL TOLERANCE BUDGET

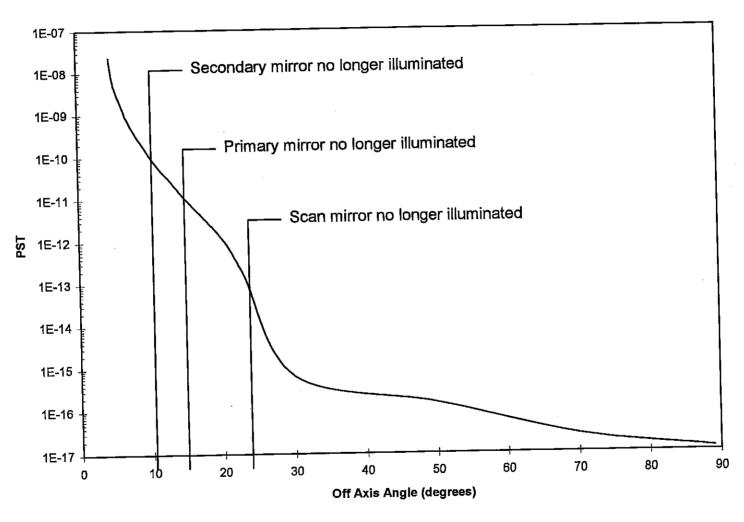
- System MTF = .546 with optics as designed. (RMS wavefront error =0.036 waves)
- System MTF = .500 when RMS wavefront error = .160 waves
- System MTF = 0.528 at budgeted RMS wavefront error.
- Static Errors
 - Focus adjustment can compensate for many of these errors
 - Budgeted error = .053 waves
- Dynamic Errors
 - Focus adjustment can not be used
 - Budgeted error = 0.033 waves
- RSS design, static and dynamic error budgets = 0.0985 waves

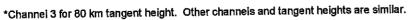


STRAY LIGHT DESIGN FEATURES

- Reimaging optics allow for the use of two key features
 - Intermediate field stop
 - Only scattered light from the mirrors and baffles located prior to stop are allowed to enter the reimaging part of the system
 - Cold Lyot stop
 - · Removes diffracted light from aperture stop and direct scatter from baffle
 - · Blocks scatter from inner primary baffle
 - Lyot stop supports totally block diffraction secondary supports
 - · Limits the background radiation from within telescope
- Mirrors are superpolished
- Main baffle limits the angles that the mirrors can be illuminated by off axis sources
- Baffle vanes and non-optical elements are coated with a highly absorptive paint

BAFFLE DESIGN


- Baffle limits off axis illumination of mirrors
- Scattered light from baffle is negligible
- Baffle vanes are perpendicular to baffle axis
- Vane tips have 2 mm tolerance w.r.t. marginal rays
- Baffle vane layout meets two bounce criteria
- Vane depth and spacing
 - Main Baffle
 - Vane depth: 10 mm
 - Vane Spacing: 21 mm
 - Fore-optics Baffle
 - Vane depth: 10 mn
 - Vane Spacing: 12 mm
- Aeroglaze 306 paint is modeled as a diffuse surface having 7.0 to 8.5 % reflectivity
- Baffle axis depression angle:
 17.927 degrees


SABER Preliminary Design Review

SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY 22

POINT SOURCE TRANSMISSION (PST) CURVE*

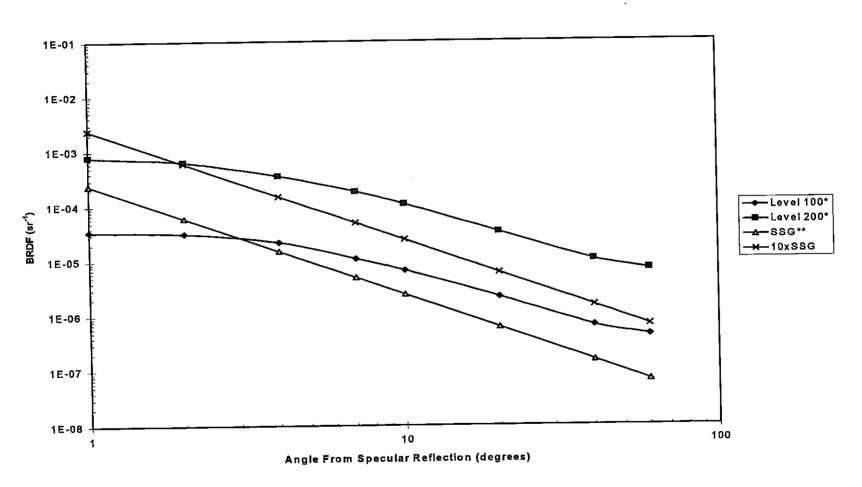
SABER Preliminary Design Review
SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

NON-REJECTED RADIANCE (NRR) FROM EARTH & ATMOSPHERE

Channal	Day or Night	NRR	NRR	Signal Radiance	Signal Radiance
Channel Number	Day of Night	(W/cm²/sr)	NER	NER	NER + NRR
1	<u> </u>	8.96E-9	0.04	84.30	81.06
2		1.26E-8	0.09	64.99	59.84
		2.83E-8	0.07	64.98	60.87
		3.70E-9	0.07	30.23	28.27
		2.33E-10	0.06	1.95	1.83
		1.20E-9	0.47	7.22	4.91
		2.26E-9	0.01	1061	1048
	Day	7.81E-12	9.9E-5	23.06	23.06
8 		3,6E-11	4.8E-4	102.6	102.6
8	Night	1.14E-11	1.8E-4	32.28	32.28
9	Day				143.6
9	Night	5.39E-11	8.7E-4	143.7	
10	-	5.97e-10	0.11	809.4	732.7

¹⁾ NER is IRD Required Noise Equivalent Radiance

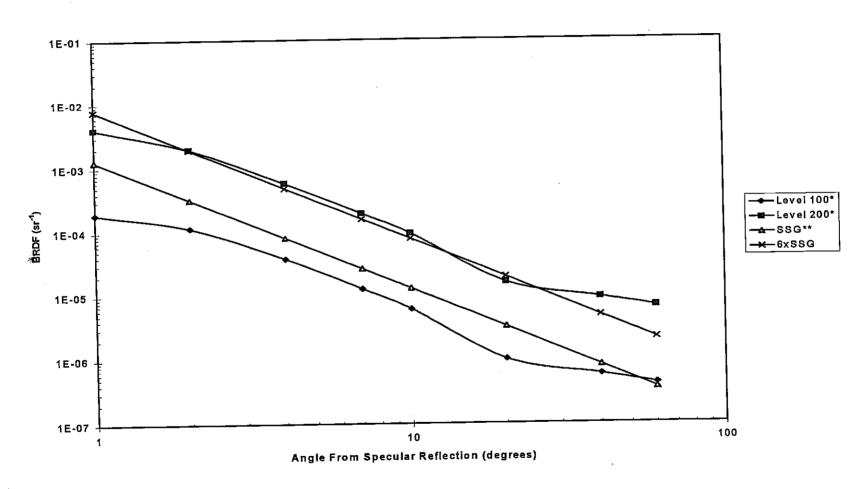
3) Reflected sunlight not included


4) Off-axis paths through chopper holes not yet included (Analysis still in progress)

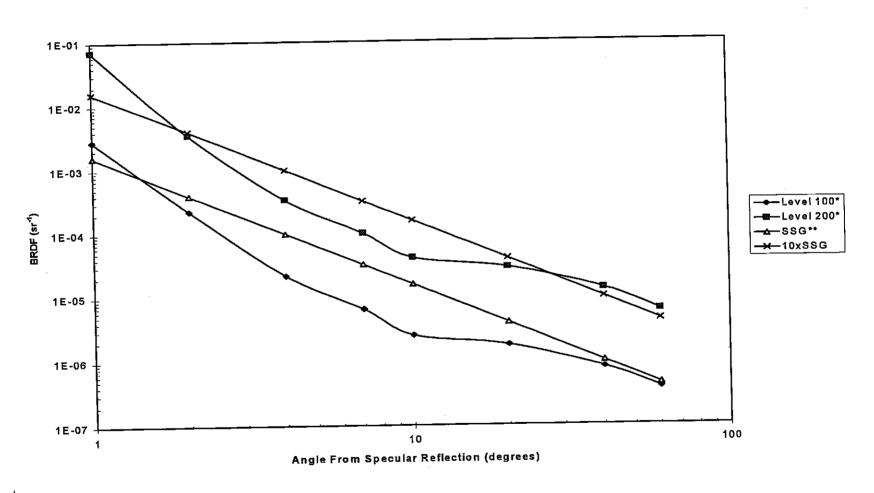
SABER Preliminary Design Review

SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY 24

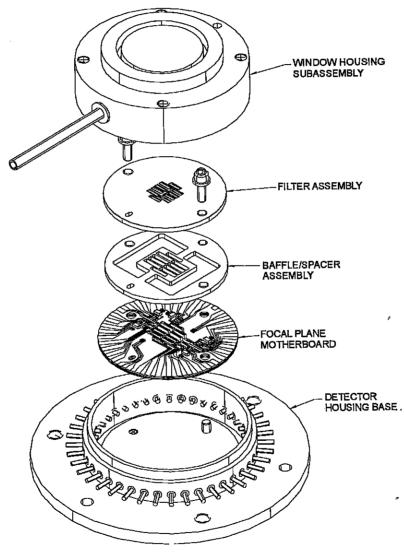
²⁾ BRDF: Chs. 1 thru 4, 2.39E-4 at 1° with 1.84 slope; Chs. 5 thru 8, 1.28E-3 at 1° with 2.15 slope; Chs. 9 thru 10,1.58E-3 at 1° with 2.00 slope. (SSG pristine clean mirror data for 10.6 μ m, 3.39 μ m and 0.63 μ m wavelengths respectively)


MIRROR BRDF at 10.6 μ m

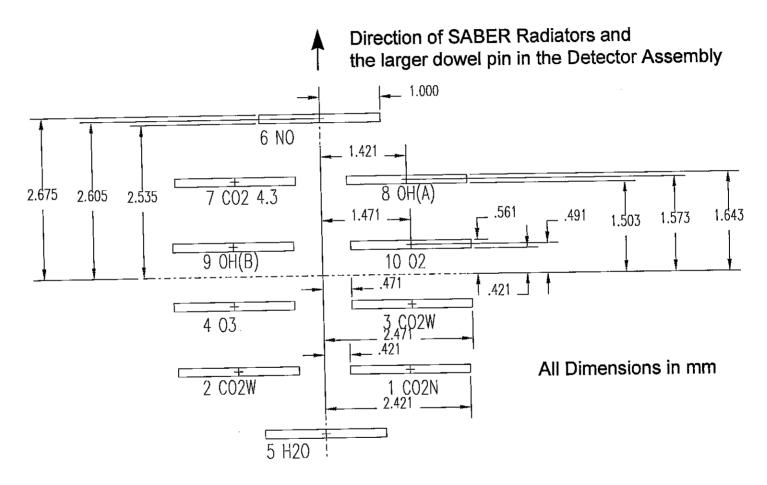
*Spyak and Wolf, Optical Engineering Vol. 31, p 1746 - 1784, (1992) **SSG measured data of pristine mirror


MIRROR BRDF at 3.39 μm

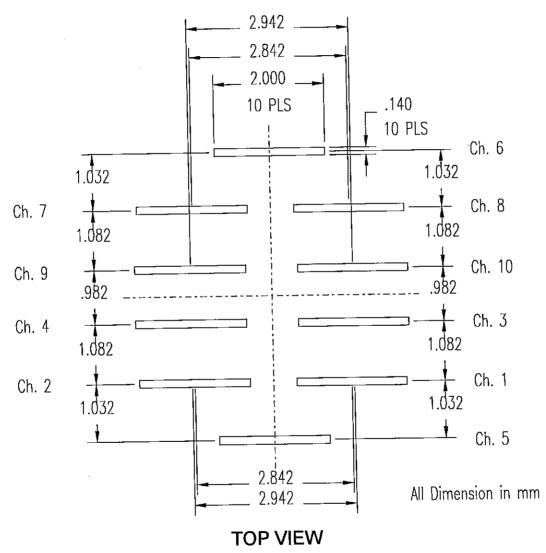
^{*}Spyak and Wolf, Optical Engineering Vol. 31, p 1746 - 1784, (1992)
**SSG measured data of pristine mirror


MIRROR BRDF at 0.633 μm

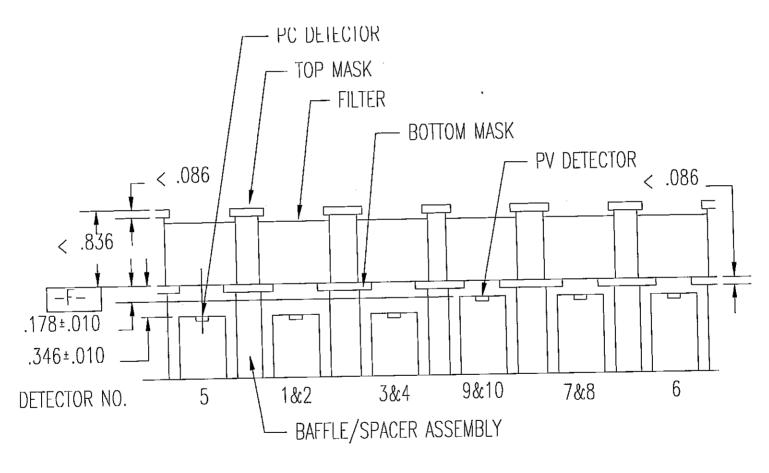
*Spyak and Wolf, Optical Engineering Vol. 31, p 1746 - 1784, (1992) **SSG measured data of pristine mirror



DETECTOR ASSEMBLY


DETECTOR LOCATIONS

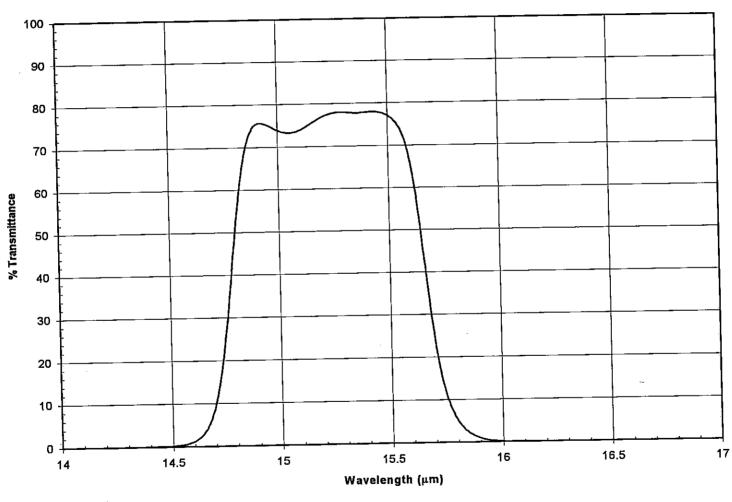
VIEW LOOKING AT TOP SURFACES OF DETECTORS


DETECTOR ARRAY DIMENSIONS

SABER Preliminary Design Review

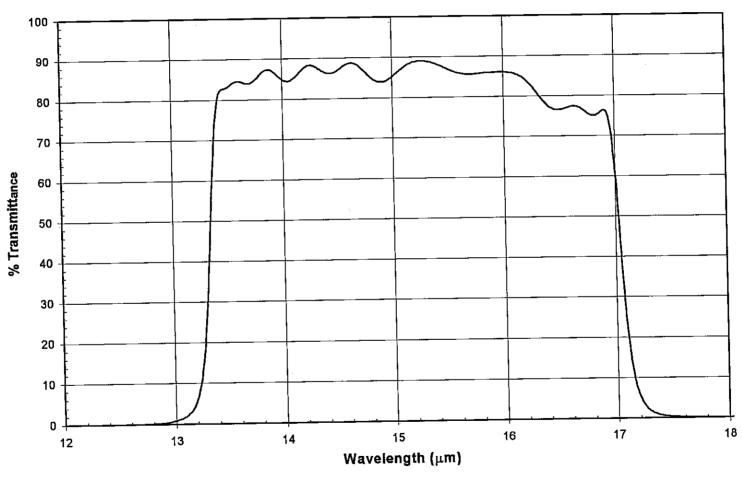
FILTER ASSEMBLY, BAFFLE/SPACER & DETECTORS

All Dimensions in mm

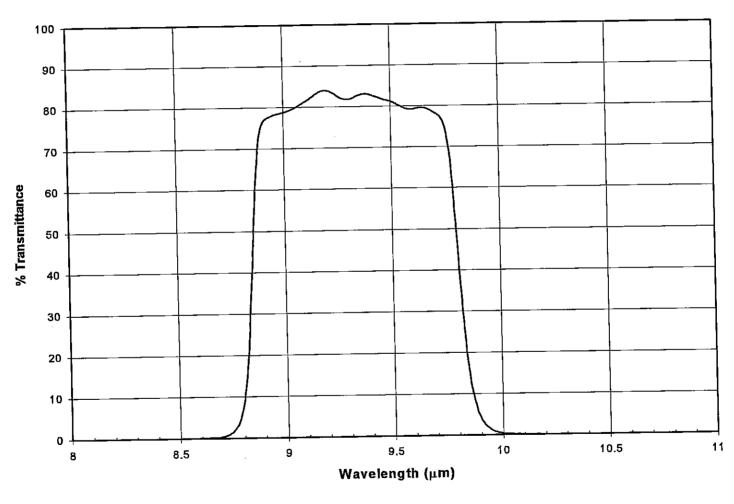

SABER Preliminary Design Review

DETECTOR PERFORMANCE SUMMARY

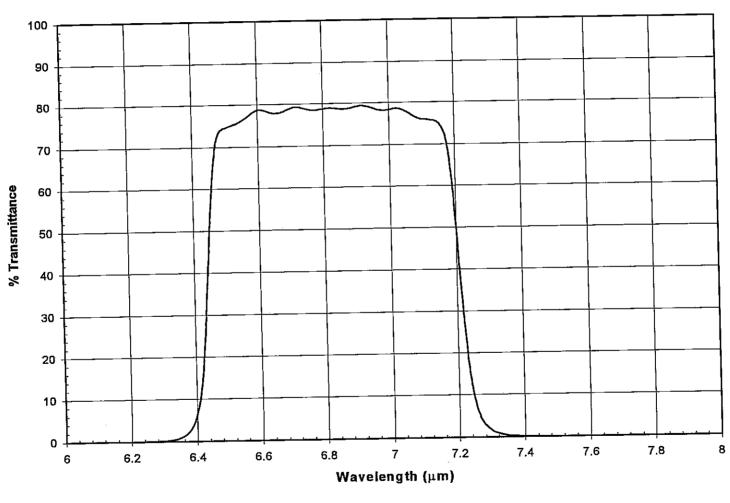
		T	Dice	*Background	Minimum	Minimum	Dominate
}	Material	Type	Bias	Photon	D	Responsivity	Noise Sources
No.	}		Power	-	(cmHz ^{1/2} /W)	1 (Copondivity	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
}				Irradiance	(CIIITZ /VV)		
<u> </u>			(mW)	(ph/sec/cm ²)		0.050.704	Thermal GR
1 I	HgCdTe	PC	3	1.88E14	9.5E10	8.6E3 V/W	
2	HgCdTe	PC	3	1.20E15	7.3E10	9.6E3 V/W	Thermal GR
3	HgCdTe	PC	3	1.20E15	7.3E10	9.6E3 V/W	Thermal GR
4	HgCdTe	PC	10	1.18E14	3.8E11	1.8E4 V/W	Detector. Resistance
5	HgCdTe	PC	10	2.20E13	6.0E11	3.7E4 V/W	Detector. Resistance
		D) /	3	2.32E12	8.0E12	3.5 A/W	Background Photons
6	InSb	PV	٥	2.321.12	0.0212	0.0707	Detector Resistance
							JFET Current Noise
7	InSb	PV	3	1.16E11	8,8E12	2.8 A/W	Detector Resistance
'	IIIOD	'		1.115=11			JFET Current Noise
 	InCoAn	PV	3	2.13E8	4.4E12	1.2 A/W	Detector Resistance
8	InGaAs	"		2.1020			JFET Current Noise
9	InGaAs	PV	3	2.45E8	3.5E12	1.0 A/W	Detector Resistance
ן פּ	шоалз	' "					JFET Current Noise
10	InGaAs	PV	3	1.68E8	3.9E12	0.8 A/W	JFET Current Noise
10				1.68E8	3.9E12	0.8 A/W	


^{*}Power is dissipated in detectors and FPA JFETS for PC and PV detectors, respectively Chopping frequency is 1000 Hz

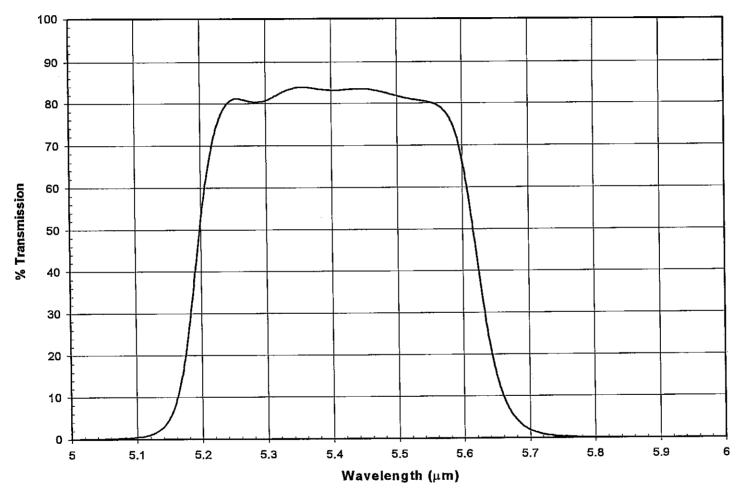
CHANNEL 1 FILTER DESIGN TRANSMITTANCE



CHANNELS 2 & 3 FILTER DESIGN TRANSMITTANCE

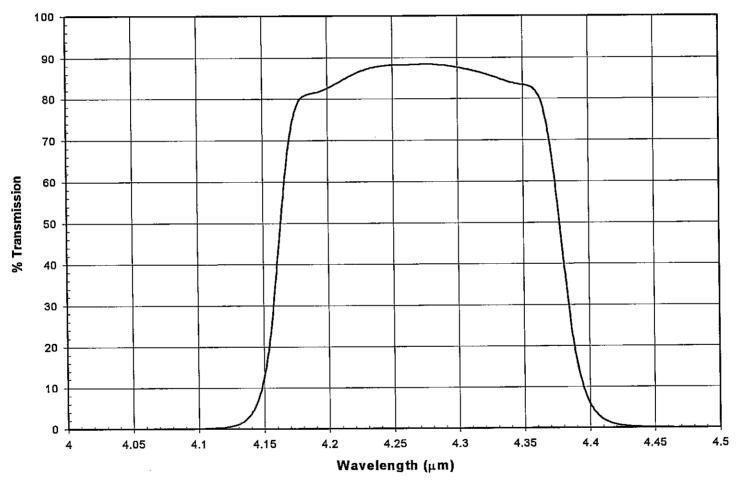


CHANNEL 4 FILTER DESIGN TRANSMITTANCE



CHANNEL 5 FILTER DESIGN TRANSMITTANCE

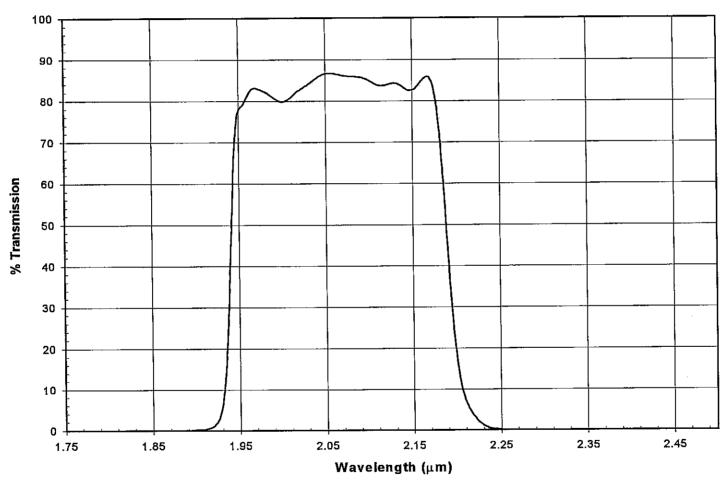
CHANNEL 6 FILTER DESIGN TRANSMITTANCE



SABER Preliminary Design Review
SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

37

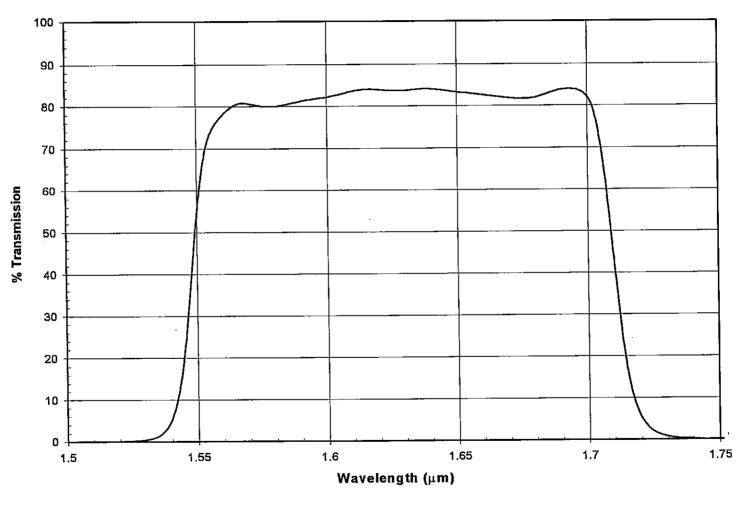
CHANNEL 7 FILTER DESIGN TRANSMITTANCE



SABER Preliminary Design Review
SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY
38

SDL/96-067

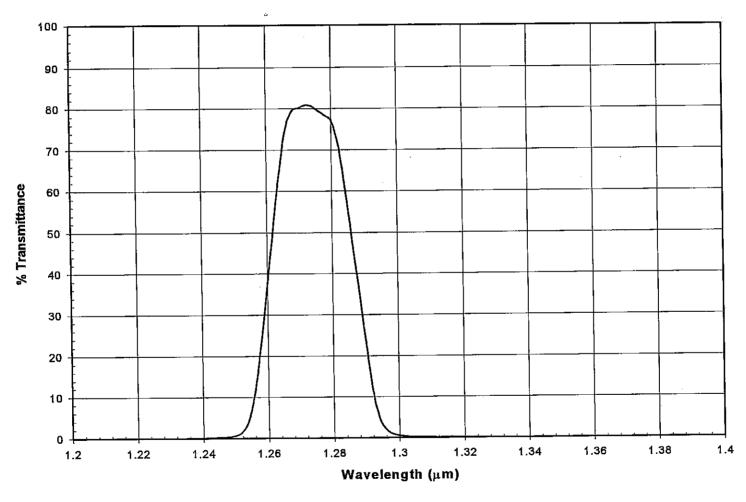
CHANNEL 8 FILTER DESIGN TRANSMITTANCE



SABER Preliminary Design Review
SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

39

CHANNEL 9 FILTER DESIGN TRANSMITTANCE



SABER Preliminary Design Review
SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY
40

SDL/96-067

CHANNEL 10 FILTER DESIGN TRANSMITTANCE

SABER Preliminary Design Review
SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

41

CONCLUSION

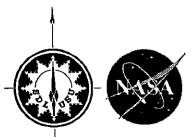
• The Radiometric subsystem design meets all design requirements with margin except the long wavelength blocking for channel 1 is a factor of 2 too small.

SABER Preliminary Design Review

SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

42

SCANNER SUBSYSTEM OVERVIEW


Frank Peri

December 10, 1996

Phone: (757) 864-7102

Fax: (757) 864-8828

E-Mail: f.peri@larc.nasa.gov

SABER Preliminary Design Review

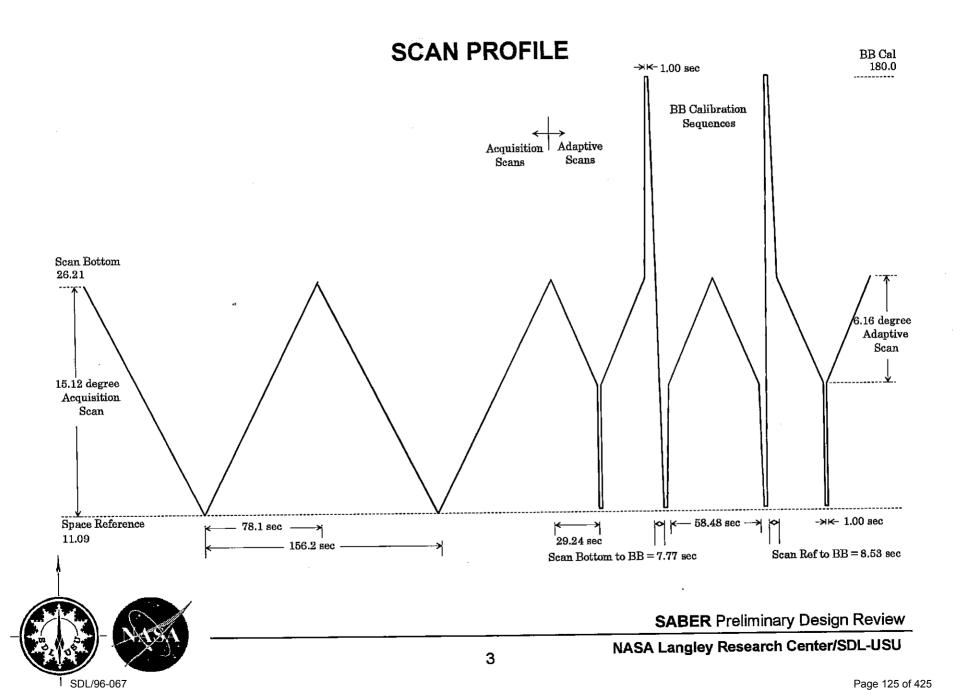
SCAN REQUIREMENTS

Scan Range

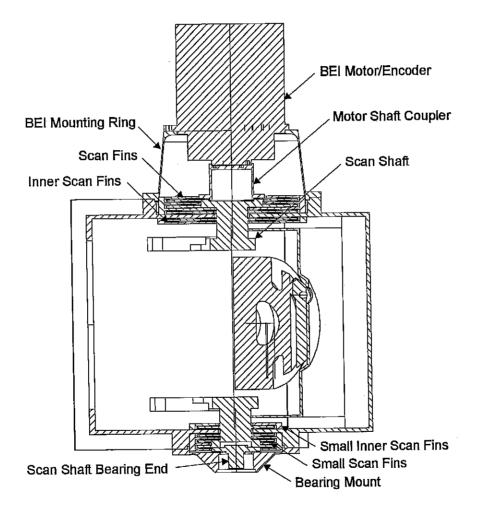
- Minimum depression angle places top of FPA at -3km
- Maximum depression angle places bottom of FPA at 400km

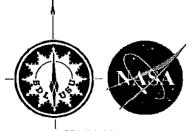
Scan Velocity

- Five samples at the instrument sample rate (22.5 Hz) in each 2km of vertical interval, referenced at a 60km tangent altitude.
- Corresponds to 0.19357 degrees per second

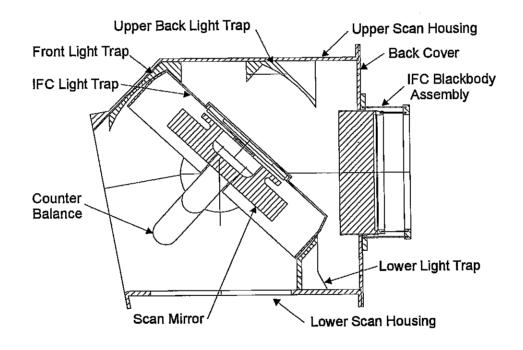

Vertical Sample Spacing Knowledge

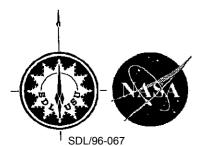
- Samples spaced within 3km
 - Knowledge of error between samples is 30 meters
- Samples spaced farther than 3 km apart
 - Knowledge of error between samples to within 1% of the distance between the samples
 - Corresponds to 2.2 arc-sec angular knowledge



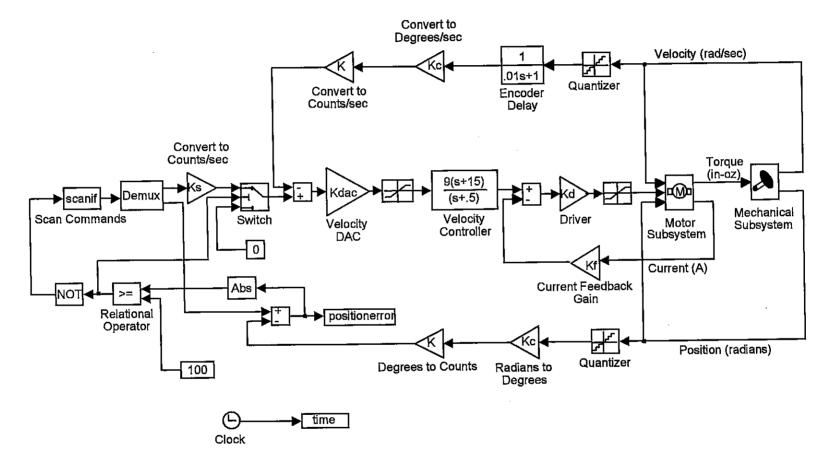


SABER Preliminary Design Review


SCANNER MECHANISM

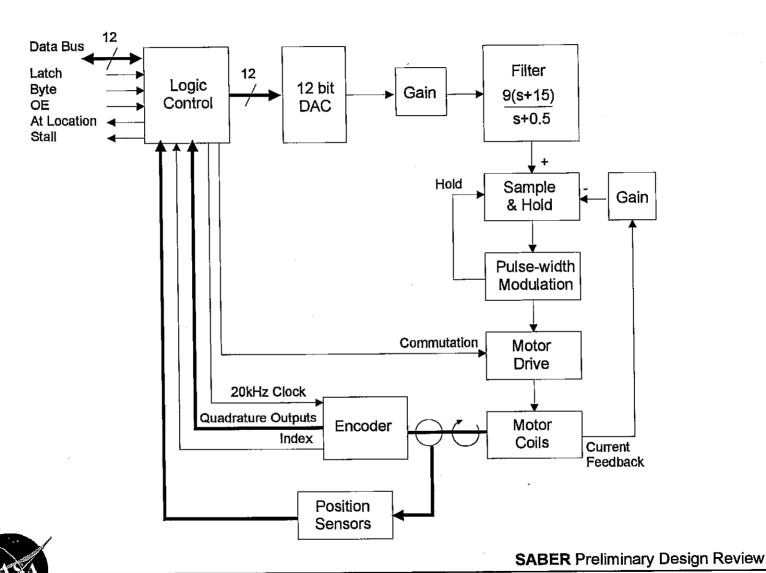


SABER Preliminary Design Review


SCANNER MECHANISM



SABER Preliminary Design Review


CONTROL SYSTEM BLOCK DIAGRAM

SABER Preliminary Design Review

ELECTRICAL BLOCK DIAGRAM

SCANNER CONTROLLER DESIGN

Method

- Closed-Loop control of mirror using conventional analog circuitry with digital interface to instrument controller.
- Velocity feedback control.
- Pulse-Width modulation (PWM) drive.
- Motor commutation derived from hall-effect sensors.

Features

- Scan control independent of instrument control.
- Command format:
 - Position (12-bit)
 - Velocity (scan or slew) (1-bit)

SABER Preliminary Design Review

SCANNER MOTOR/ENCODER

Motor

- 3-phase, 24-pole brushless DC motor manufactured by Inland Motor.
- Hall Effect sensors included for commutation.

Encoder

- BEI design
- Provides four sinusoidal quadrature count output signals on code disk: +cos(4096),
 -cos(4096), +sin(4096) and -sin(4096).
- Encoder electronics interpolates these signals into two signals providing 2¹⁸ quadrature cycles per revolution.
- SDL electronics translates these signals into a direction signal and a 2²⁰ pulse per revolution signal.
- 20-bit encoder results in angular position knowledge of 1.24 arc-sec.
- BEI to integrate motor and encoder and provide bearing assemblies and interface flange to SDL scan mirror/baffle assembly

SABER Preliminary Design Review

SCANNER SUBSYSTEM SUMMARY

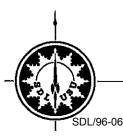
- Requirements achieved:
 - Motor/Encoder allows free range of motion, limited by mechanical stops that prescribe scan range.
 - Position knowledge requirement exceeded by use of 20-bit encoder.
 - Constant velocity adaptive scans achieved by use of velocity feedback controller.
- Scan mirror motion does not require continuous instrument control.
- Encoder manufacturer providing motor/encoder integration and interface to SABER scan mirror assembly.

SABER MECHANICAL SYSTEMS OVERVIEW

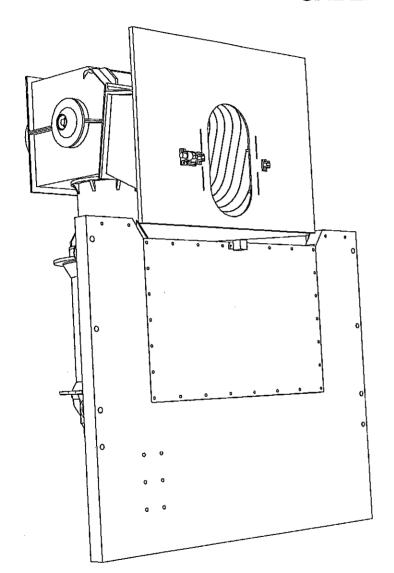
MEHRDAD ROOSTA

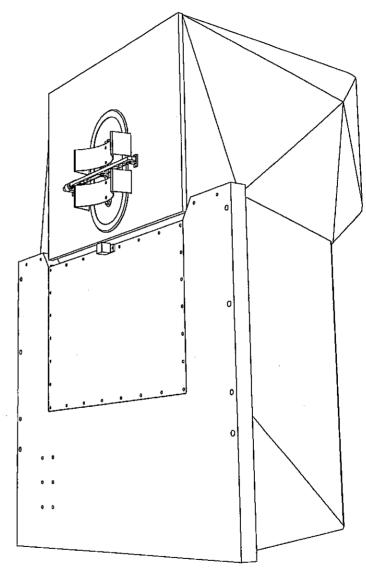
801-755-4213

mehrdad.roosta@sdl.usu.edu

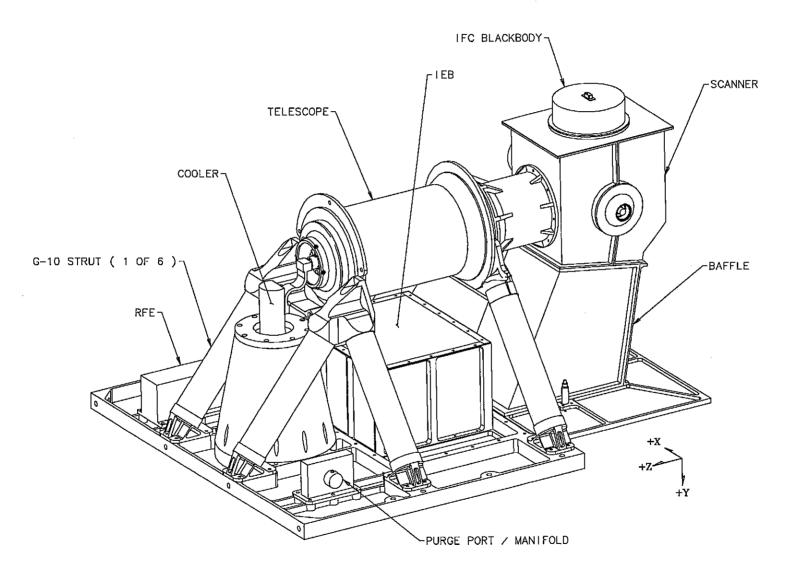

DECEMBER 10, 1996

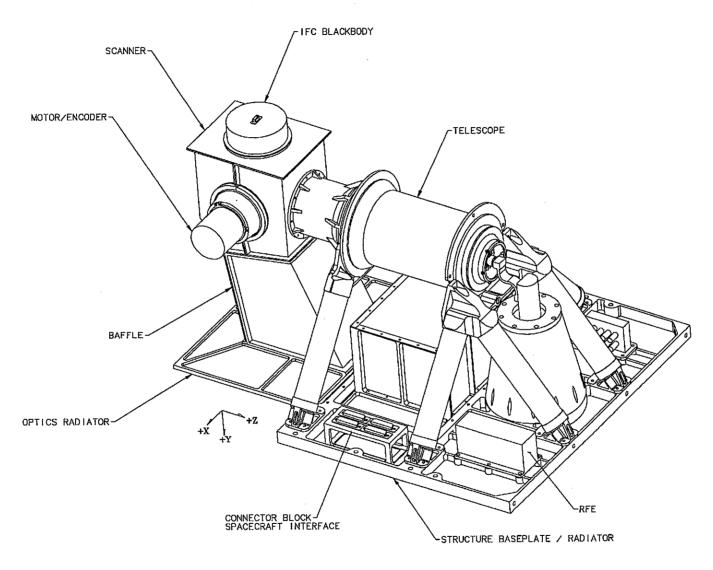
SABER Preliminary Design Review


SABER MECHANICAL SYSTEMS OVERVIEW

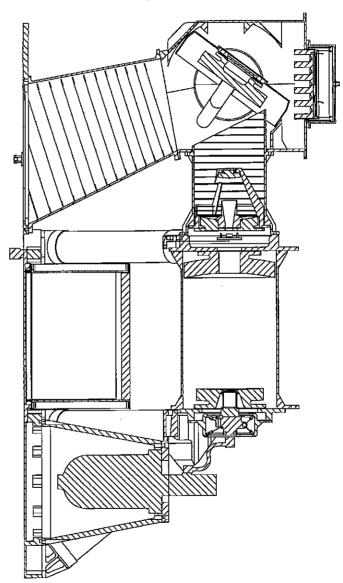

- SABER instrument is packaged and delivered as a single integrated protoflight unit.
 - SABER will be mounted and aligned to Spacecraft +Y face.
 - SABER Structure thermally insulates the Telescope from the S/C frame.
- SABER Volume, Mass Properties, and interfaces meet S/C requirements.
 - Payload mass is 61.7 Kg
 - Mechanical Interfaces are in place and are maturing as S/C design develops.
- Mechanical design meets structural and thermo-mechanical requirements.
 - Fundamental Frequency > 80Hz (Including the Thermal Washers)
 - Positive Margins of Safety against limit loads and test factors.
 - Ongoing stability analysis against S/C and Structure thermal gradients.
- SABER instrument will undergo protoflight level environmental tests at SDL.
- SABER will be shipped to S/C integration site mounted inside the calibration chamber.

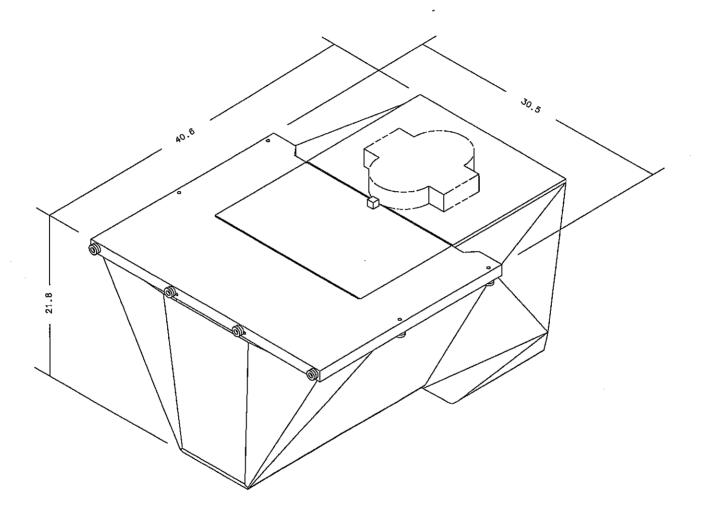
SABER Preliminary Design Review


SABER INSTRUMENT


SABER Preliminary Design Review

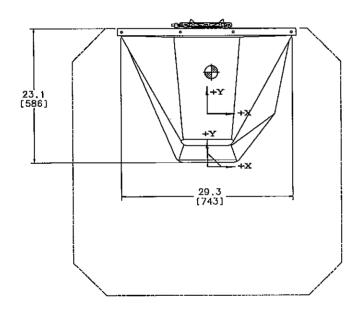
SABER INSTRUMENT

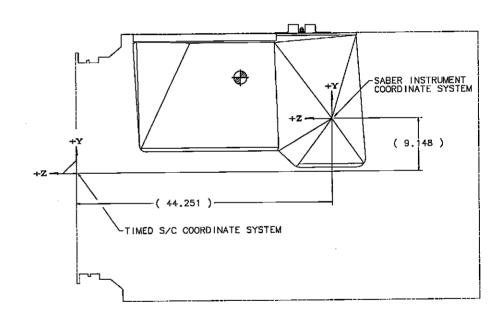

SABER INSTRUMENT


SABER Instrument Mechanical Subsystems

- Telescope
 - Baffle
 - Scanner
 - Optics Radiator
- Cooler
- Structure
- Deployable Cover
- Electronic Enclosure
- Purge System
- Mechanical GSE

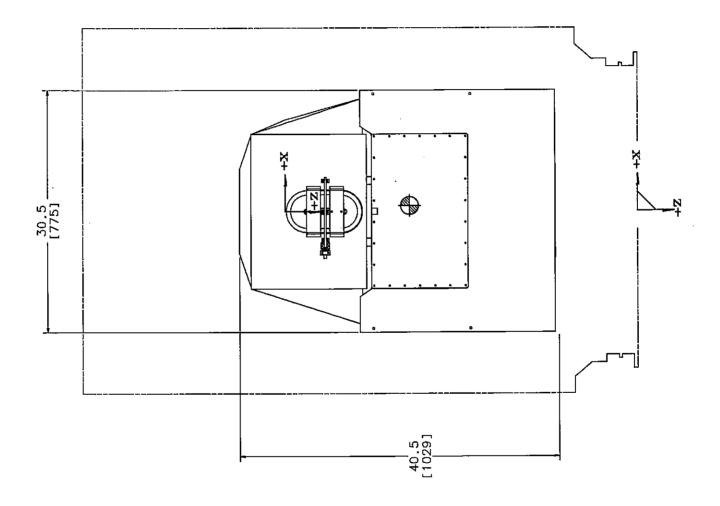
SABER Preliminary Design Review


SABER Instrument Envelope

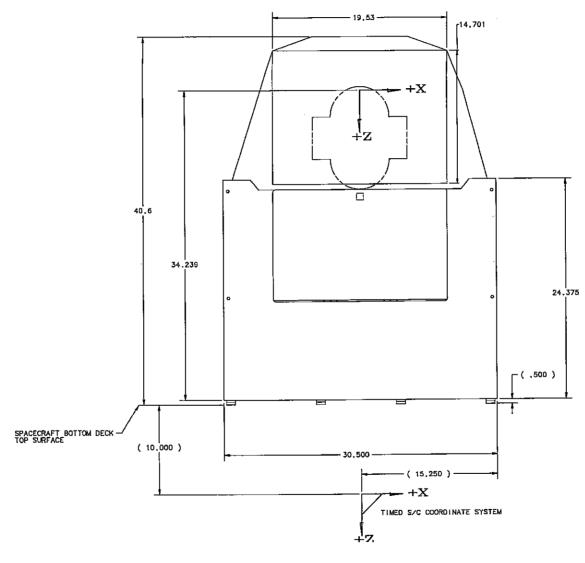


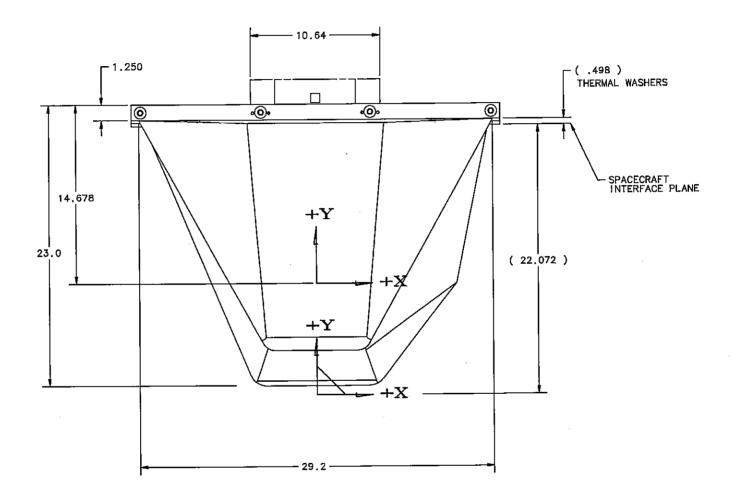
SABER Preliminary Design Review

SABER Instrument & Spacecraft Envelopes

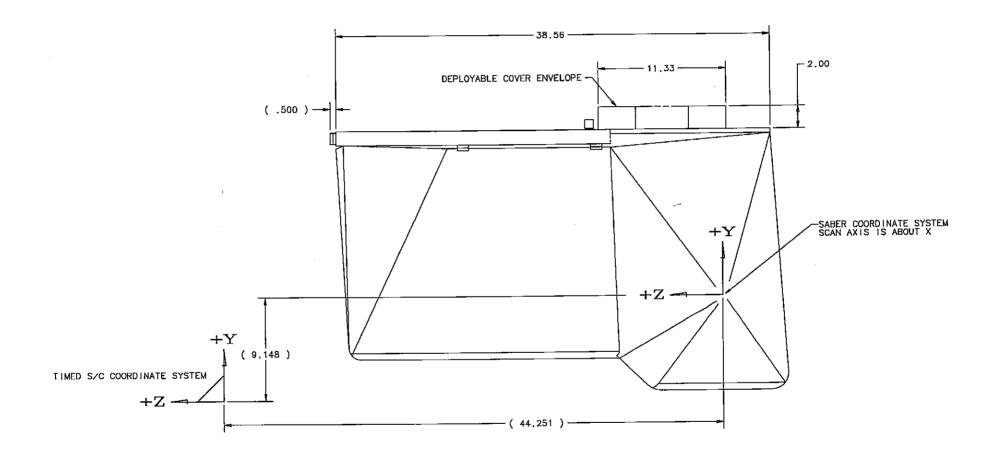


SABER Preliminary Design Review


SABER Instrument & Spacecraft Envelopes

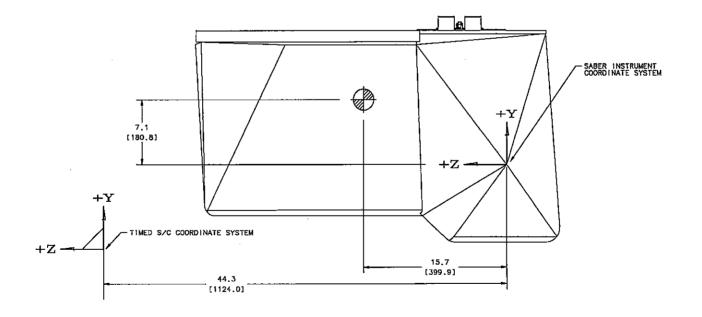

SABER Preliminary Design Review

SABER Instrument XZ Envelope


SABER Instrument XY Envelope

SABER Preliminary Design Review

SABER Instrument YZ Envelope

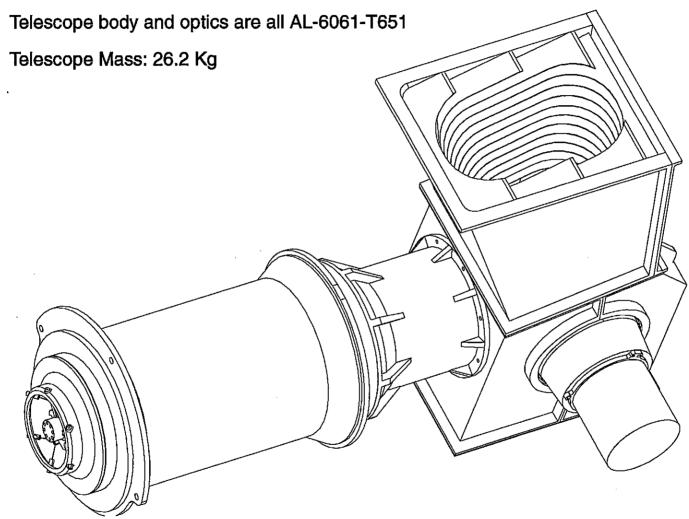


SABER Preliminary Design Review

SABER Mass Properties

	MASS	lxx	Туу	lzz	lxy	lyz	lxz	
	Kg	Kg.mm^2	Kg.mm^2	Kg.mm^2	Kg.mm^2	Kg.mm^2	Kg.mm^2	
SABER INSTRUMENT	61.71	1.790E+7	1.530E+7	5.068E+6	1.813E+5	5.711E+6	4.290E+5	MOMENTS OF INERTIA ABOUT SABER COORDINATE SYSTEM
		6.117E+6	5.918E+6	3.049E+6	-1.863E+4	1,286E+6	-1.337E+4	MOMENTS OF INERTIA ABOUT SABER CG

Instrument CG is at (18.1, 180.8, 399.9) mm, or (0.7, 7.1, 15.7) in.

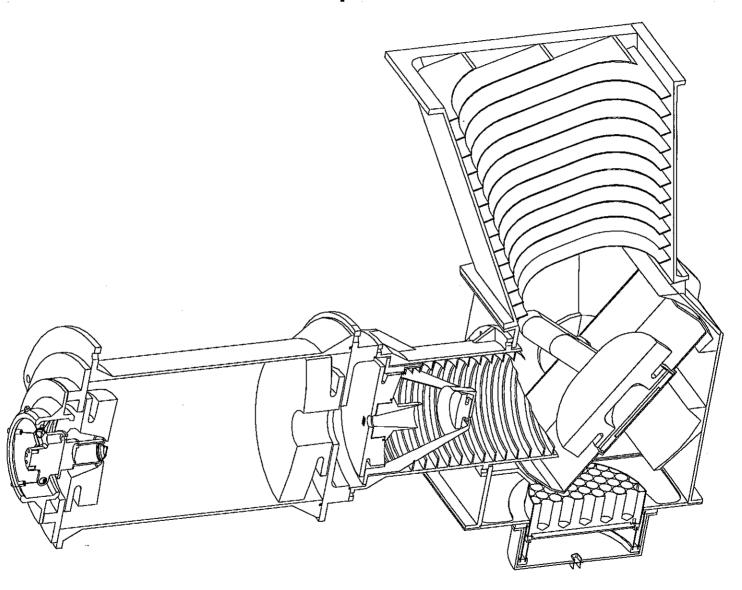


SABER Preliminary Design Review

SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

Page: MR-13 Page 145 of 425

SABER Telescope



SABER Preliminary Design Review

SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

Page: MR-14 Page 146 of 425

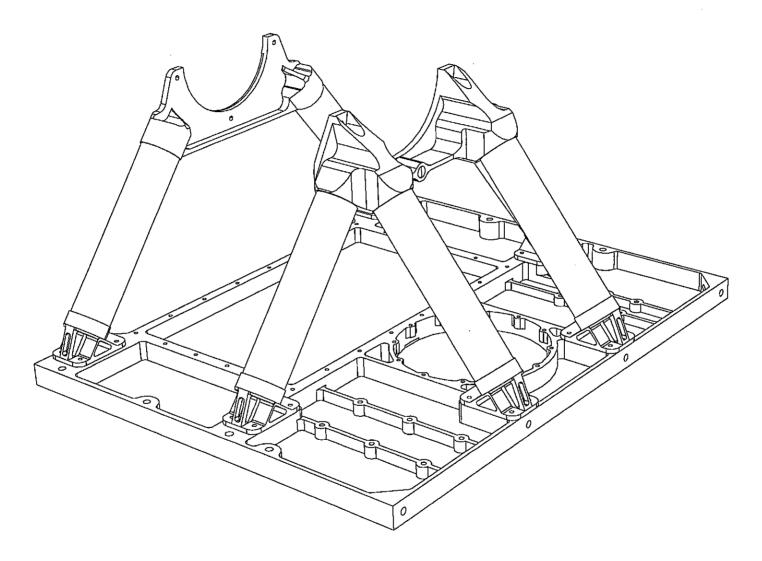
SABER Telescope YZ Section View

SABER Preliminary Design Review

SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

Page: MR-15 Page 147 of 425

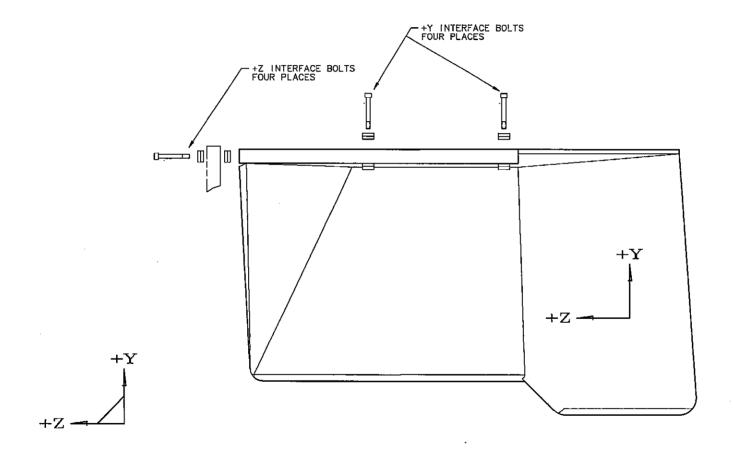
SABER Structure


- Structure Design meets the following Criteria:
 - Strain Free support of Telescope Assembly.
 - Provide Stiff attachment to the Spacecraft (System f_n > 80 Hz)
 - Provide thermal insulation between S/C and different parts of SABER.
- Structure is all 6061-T651 Aluminum with eight G-10 Struts.
 - SDL has extensive experience with AL / G-10 structures.
 - Cost effective approach.
 - Critical members will be fully tested and qualified before protoflight unit is made.
- Structural Baseplate also functions as a radiator.
- Structure will be used as the alignment jig for the telescope.

SABER Preliminary Design Review

Page: MR-16 Page 148 of 425

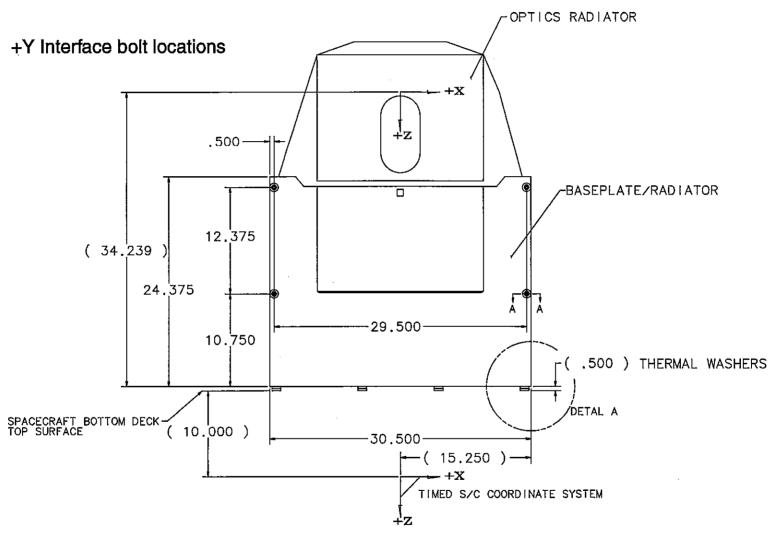
SABER Structure


SABER Preliminary Design Review

SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

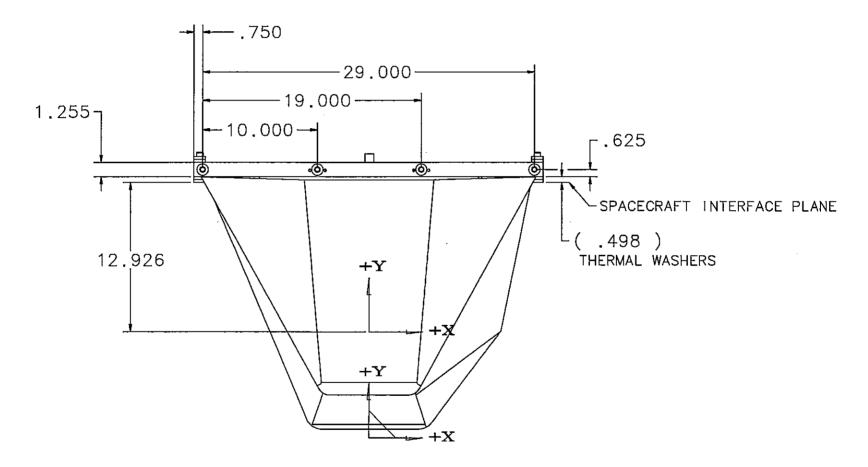
Page: MR-17 Page 149 of 425

SABER Mechanical Interfaces


• SABER is mounted to the spacecraft by eight sets of bolts and thermal washers.

SABER Preliminary Design Review

SABER Mechanical Interfaces

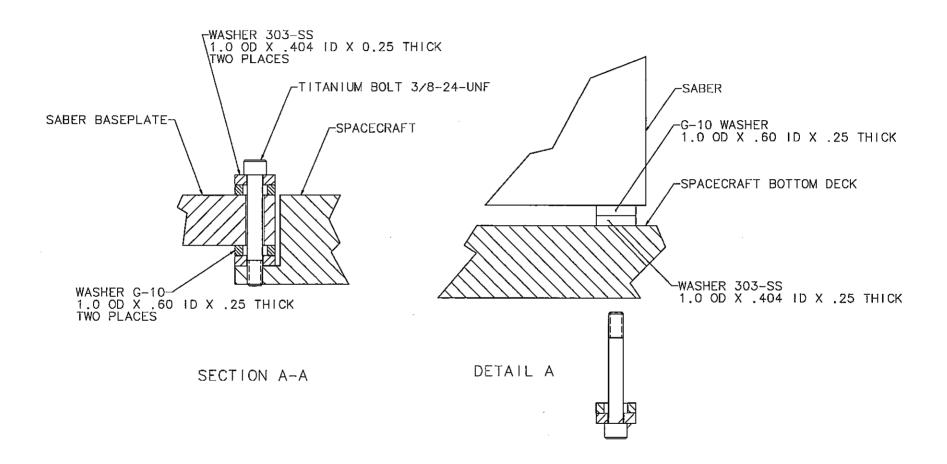

SABER Preliminary Design Review

SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

Page: MR-19 Page 151 of 425

SABER Mechanical Interfaces

+Z Interface bolt locations

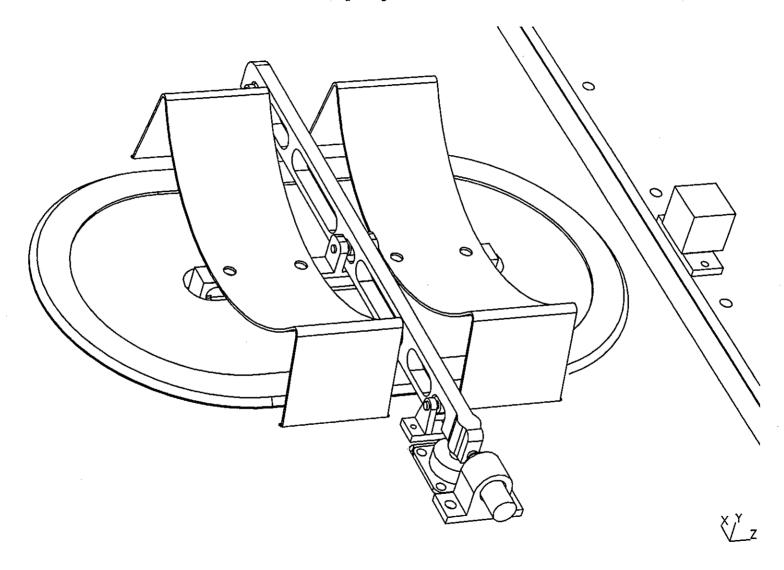


SABER Preliminary Design Review

SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

Page: MR-20 Page 152 of 425

SABER Mechanical Interface Details

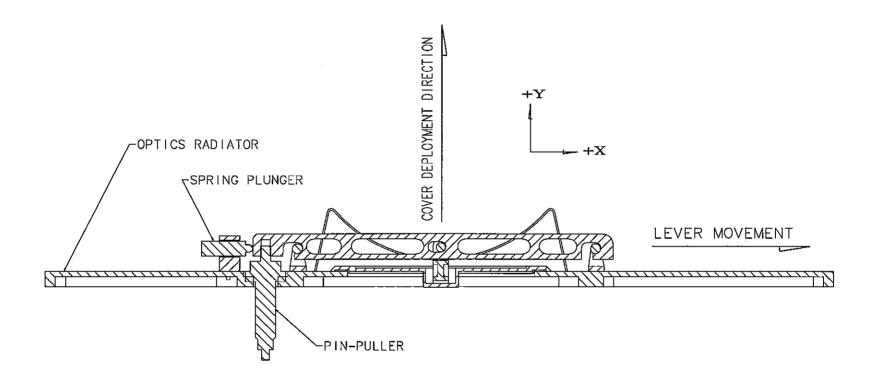

SABER Preliminary Design Review

SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

Page: MR-21

Page 153 of 425

SABER Deployable Cover



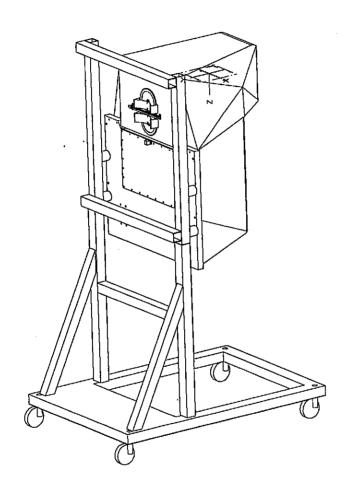
SABER Preliminary Design Review

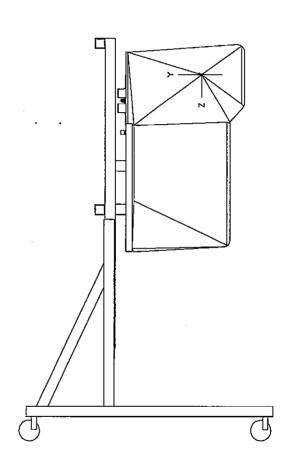
SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

Page 154 of 425

SABER Deployable Cover

The mass of deployed portion of cover is less than 300 grams.

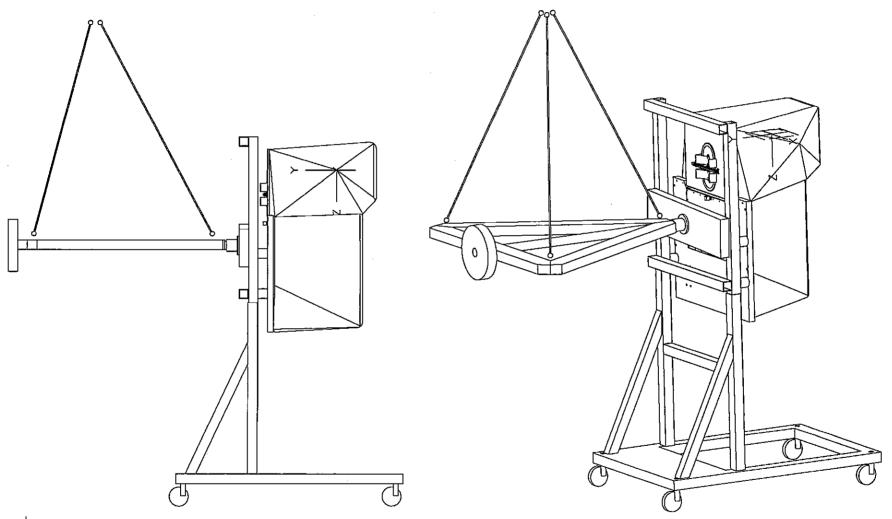



SABER Preliminary Design Review

SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

Page: MR-23 Page 155 of 425

SABER Mechanical GSE / Handling Cart

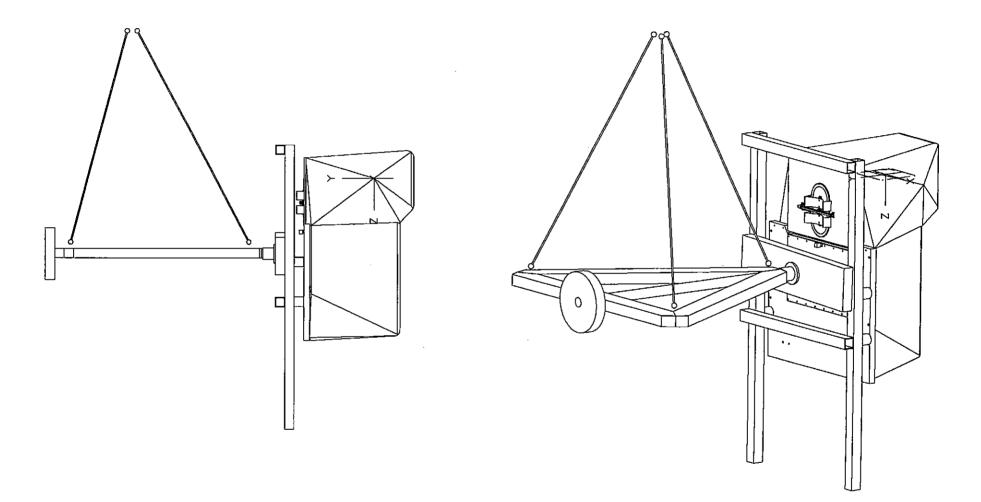


SABER Preliminary Design Review

SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

Page: MR-24 Page 156 of 425

SABER Mechanical GSE / Lifting Sling

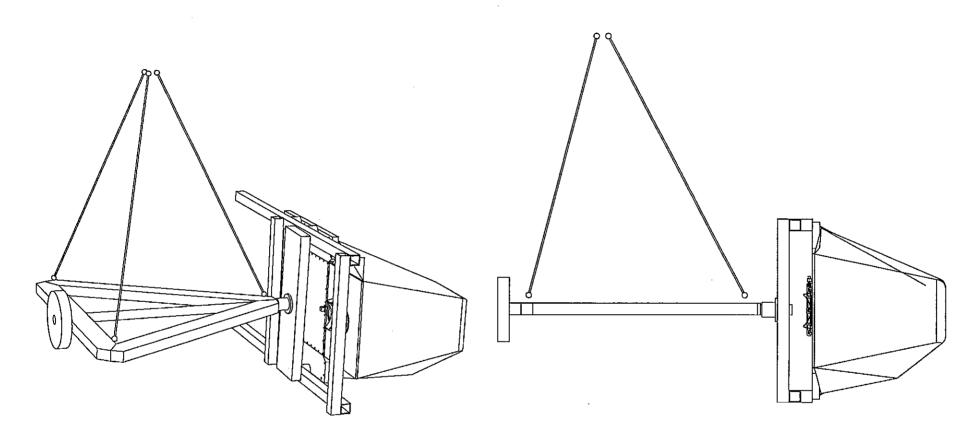

Hand-off to lifting sling from handling cart

SABER Preliminary Design Review

SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

Page: MR-25 Page 157 of 425

SABER Mechanical GSE / Lifting Sling



SABER Preliminary Design Review

SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

Page: MR-26 Page 158 of 425

SABER Mechanical GSE / Lifting Sling

SABER is rotated for horizontal handling

SABER Preliminary Design Review

SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

Page: MR-27

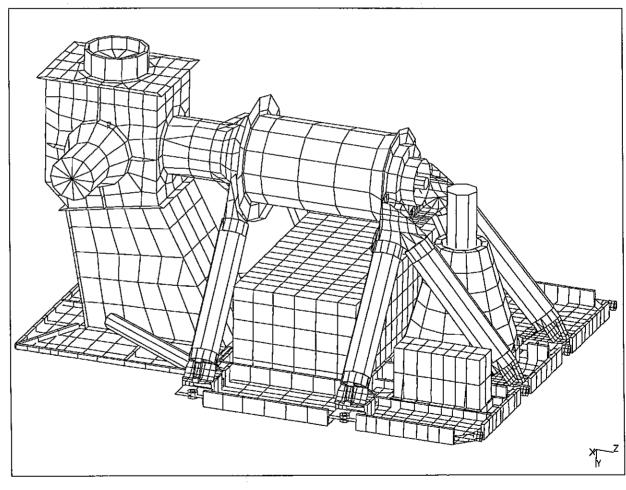
STRUCTURAL ANALYSIS

Steven L. Folkman

December 10, 1996

Phone: (801) 797-2879

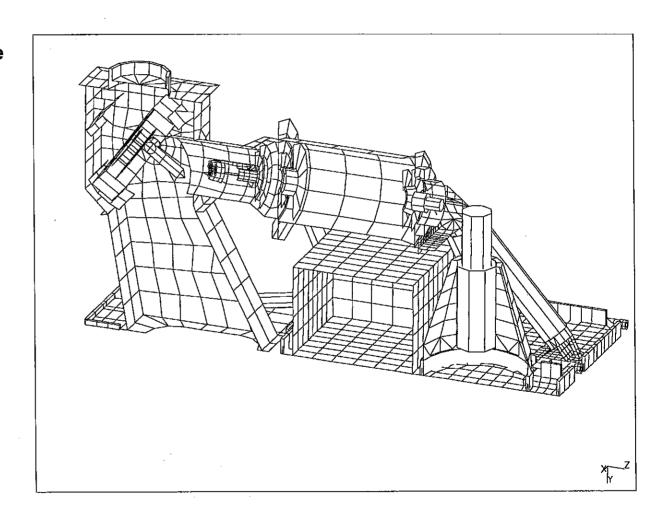
Fax: (801 797-2417


E-Mail: stevef@mae.usu.edu

FINITE ELEMENT MODEL Description

Detailed Finite Element Model Constructed

- 4543 Elements
- 4244 Nodes
- Model Mass 59.0 kg
- G10 struts modeled with beam elements
- G10 mount washers modeled with beam elements
- Refrigerator model by a stiff beam

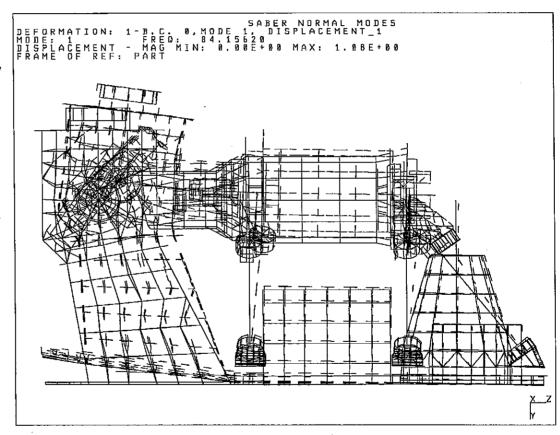


SABER Preliminary Design Review SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

FINITE ELEMENT MODEL Description

Components in the Finite Element Model

- Pointing Mirror
- Four fixed mirrors
- Optical bench
 - Kevlar fiber support
 - no linkage to cooler
- Inside view displayed on the right

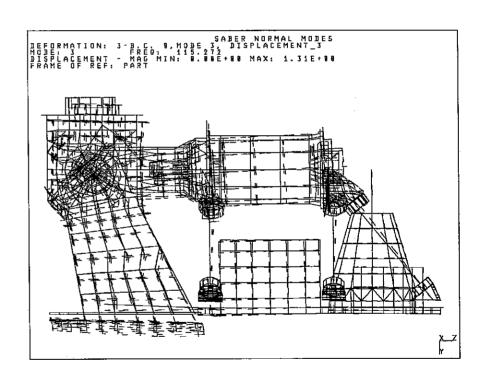


PREDICTED VIBRATION MODES

Normal Modes Analysis

Results

- Analysis Assumptions
 - Model is restrained by clamped nodes at the Spacecraft attach points
- First 5 Modes
 - 84.2 Hz.
 - 97.8 Hz.
 - 115.3 Hz.
 - 119.6 Hz.
 - 128.6 Hz.
- The first mode shape displayed on the right (the dashed lines are the deformed geometry)



PREDICTED VIBRATION MODES Normal Modes Analysis

2nd Mode

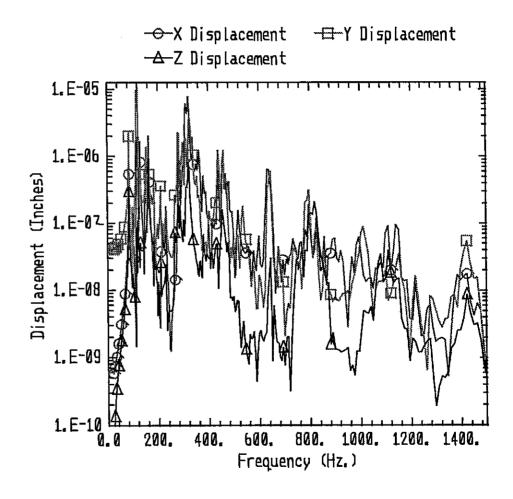
SABER NORMAL MODES O, MODE 2. DISPLACEMENT_2 DISPLACEMENT - MRED MIN: 0.00 MAX: 1.200+00 FRAME OF REF. PART

3rd Mode

STRESS ANALYSIS 16G Loads In Each Axis

Stress Analysis

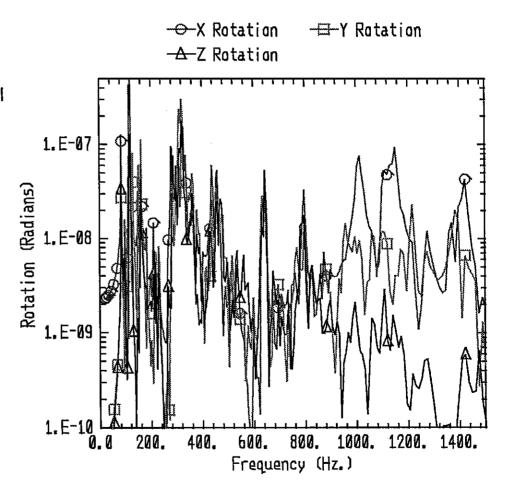
- Nodes at spacecraft interface were fixed
- 16 G loads applied individually in X, Y, and Z axes
- Predicted stresses increased by a factor of 3.0 to account for stress risers or a course mesh
- Factor of Safety applied: 1.4 used on yield, 1.875 on ultimate, 2.0 on composites
- Predicted stresses are low and positive margins obtained
- Max forces at spacecraft bolts: 322 lbs axial, 78 lbs shear, 66 in-lbs moment


Location	Maximum Stress (ksi)	Yield Margin of Safety	Ultmate Strength Margin of Safety	
Telescope	2.8 ksi	2.0	1.7	
Baffle	2.3 ksi	2.6	2.2	
Optics Radiator	2.0 ksi	3.2	2.7	
Mounting Plate	3.4 ksi	1.5	1.2	
Telescope Mounting Brackets	5.1 ksi	0.6	0.5	
Kevlar Fibers	2.5 ksi	-	8.5	
G10 Tubes	1.6 ksi	-	1.5	

REFRIGERATOR DISTURBANCES Steady State Response

Analysis Assumptions and Results

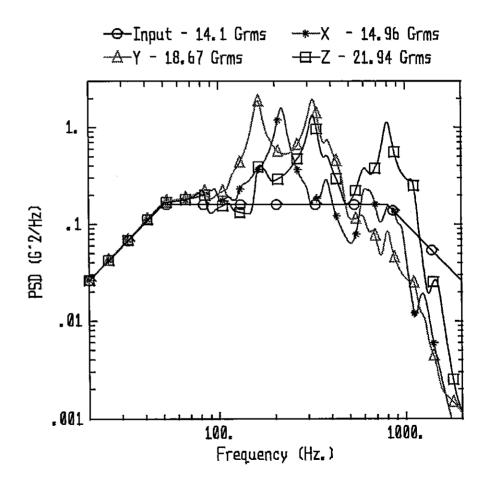
- Analysis Assumptions
 - 0.02 pound load applied in the Y direction at the refrigerator mount node
 - Model clamped at spacecraft mount nodes
 - Damping set at Q=100
 - All modes between 0-1500
 Hz. included in analysis
 - Relative displacements between the Scan Mirror and various points on the mirrors and the focal plane predicted
- The figure on the right shows the relative displacements between focal plane and the scan mirror



REFRIGERATOR DISTURBANCES Steady State Response

Analysis Results

 The figure on the right shows the relative rotations between the focal plane and the scan mirror



SABER Preliminary Design Review
SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

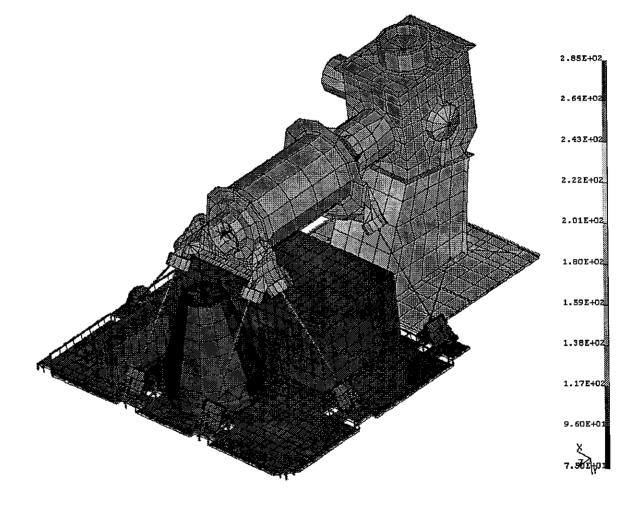
RANDOM VIBRATION Frequency Response at the Refrigerator Mount

Analysis Assumptions and Results

- Analysis Assumptions
 - A 1.0 G enforced motion applied at spacecraft mount points
 - Damping set at Q=10
 - All modes between 0-1500
 Hz. included in analysis
 - Frequency Response function at the refrigerator mount determined
 - Accelerations computed for inputs in the X, Y, and Z directions
- The figure on the right shows the input PSD and the PSD's measured at the refrigerator mount

EFFECT OF TEMPERATURE GRADIENTS ON THE TELESCOPE Simulation of Hot Case Conditions

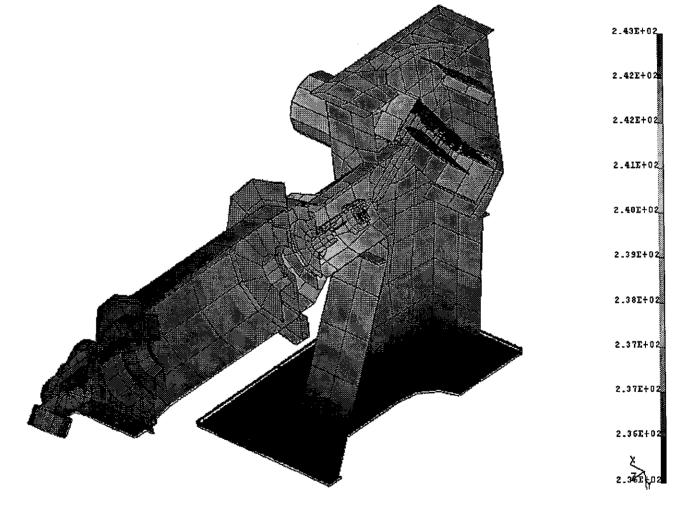
Assumptions


- Hot case thermal loads considered
- Restrained temperatures:
 - optics radiator 235 K
 - electronics box 272 K
 - mount plate 272 K with a +/- 5 K gradient
 - blackbody 250 K
 - focal plane 75 K
- Heat loads applied:
 - Scan mirror motor 3.5 W
 - Chopper 0.1 W
 - Radiation load uniformly applied inside telescope 2.5 W
 - Refrigerator mount 20 W
- · Only conduction heat transfer considered
- Steady state temperature predicted

EFFECT OF TEMPERATURE GRADIENTS ON THE TELESCOPE Simulation of Hot Case Conditions

Results

Full Model

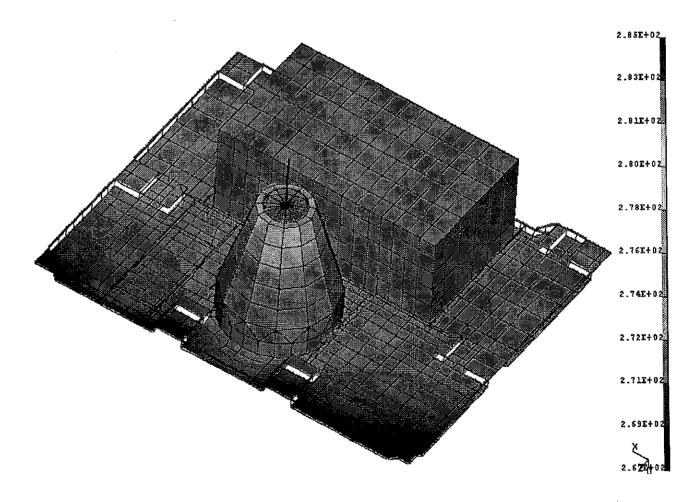


SABER Preliminary Design Review
SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY
11

EFFECT OF TEMPERATURE GRADIENTS ON THE TELESCOPE Simulation of Hot Case Conditions

Results

 Inside of Telescope

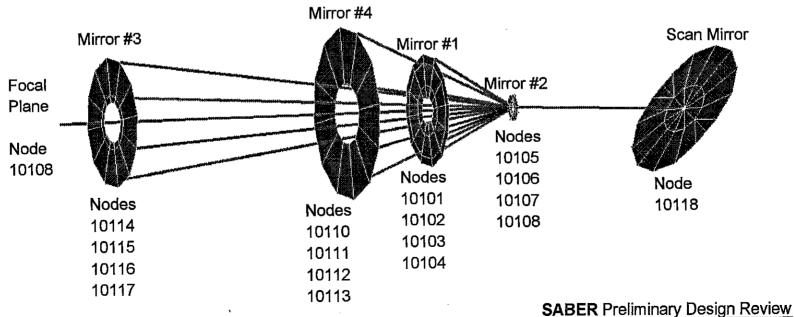

SABER Preliminary Design Review
SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

12

EFFECT OF TEMPERATURE GRADIENTS ON THE TELESCOPE **Simulation of Hot Case Conditions**

Results

Mounting plate and Refrigerator mount



SABER Preliminary Design Review
SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

EFFECT OF TEMPERATURE GRADIENTS ON THE TELESCOPE Telescope Relative Displacements

Assumptions of Static Analysis Model

- Coincident nodes created on Mirrors, but not attached to them
- Stiff aluminum beams attach the coincident nodes to the center of Mirror 2
- The stiff beams will shrink as cooled and move and rotate with the Mirror 2
- Relative displacements and rotations between coincident nodes were measured
- Nodal temperatures from heat transfer results input and displacements computed
- Experiment spacecraft mounts allowed to move with temperature changes

EFFECT OF TEMPERATURE GRADIENTS ON THE TELESCOPE **Telescope Relative Displacements**

Results

Predicted Mirror Displacements relative to Mirror 2 for the Hot Case temperatures

Node	Location X Disp. (Inch)		Y Disp. (Inch)	Z Disp. (Inch)	X Rot. (Radians)	Y Rot. (Radians)	Z Rot. (Radians)
10101	Mirror 1	-9.336E-08	-1.709E-07	-6.985E-08	4.263E-07	3.349E-08	-2.621E - 08
10102	Mirror 1	-5,383E-09	4.997E-07	1.598E-06	-2.022E-06	9.301E-08	-3.598E - 10
10103	Mirror 1	1.128E-08	-6.529E-08	6.725E-07	4.335E-07	1.076E-08	-1.654E-08
10104	Mirror 1	5.645E-08	-1.806E-07	-4.177E-08	4.975E-07	-9.366E-08	4.309E-08
10105	Mirror 2	1,451E-10	-1.200E-08	1.068E-07	1.973E-13	-4.788E-13	-5.333E-14
10106	Mirror 2	1.447E-10	-1.200E-08	1.068E-07	3.708E-12	1.909E-13	1.102E-12
10107	Mirror 2	1.439E-10	-1.200E-08	1.068E-07	1.863E-12	4.405E-13	1.196E-12
10108	Focal Plane	-1.159E-05	4.628E-04	-2.315E-04	-3.874E-05	-6.351E-07	-7.464E-07
10109	Mirror 2	1.436E-10	-1.200E-08	1.068E-07	-2.688E-14	1.206E-12_	9.8 <u>45E-13</u>
10110	Mirror 4	4.463E-06	5.284E-05	-1.226E-05	-1.773E-05	-1.826E-06	-1.508E-07
10111	Mirror 4	-9.545E-06	6.606E-05	4.876E-05	-1.732E-05	-2.239E-06	-1.471E <u>-07</u>
10112	Mirror 4	-8.614E-06	3.866E-05	-6.314E-05	-1.814E-05	-2.142E-06	-1.417E-07
10113	Mirror 4	-2.265E-05	5.191E-05	1.581E-06	-1.783E-05	-2.530E-06	-1.506E-07
10114	Mirror 3	5,895E-05	4.059E-04	-1.693E-04	-2.542E-05	-2.088E-06	-7.949E-07
10115	Mirror 3	-1.236E-05	4.741E-04	-1.023E-04	-2.662E-05	-5.389E-07	-7.830E-07
10116	Mirror 3	-8,629E-06	3.341E-04	-2.237E-04	-2.435E-05	-5.505E - 07	-7.830E-07
10117	Mirror 3	-7.994E-05	4.022E-04	-1.667E-04	-2.541E-05	9.970E-07	-7.690E-07
10118	Scan M.	-2.018E-05	3.340E-03	-4.938E-04	6.413E-04	-1.095E-05	3.234E-06

SABER Preliminary Design Review
SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

SUMMARY OF STRUCTURAL ANALYSIS

SABER Meets Design Goals

- Minimum Frequency > 80 Hz.
- High Margins of Safety
- Refrigerator Disturbances are small
- There is concern about how to qualify the refrigerator
- Thermally induced displacements of the telescope are acceptable

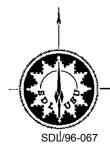
Thermal Design and Analysis

Clair Batty

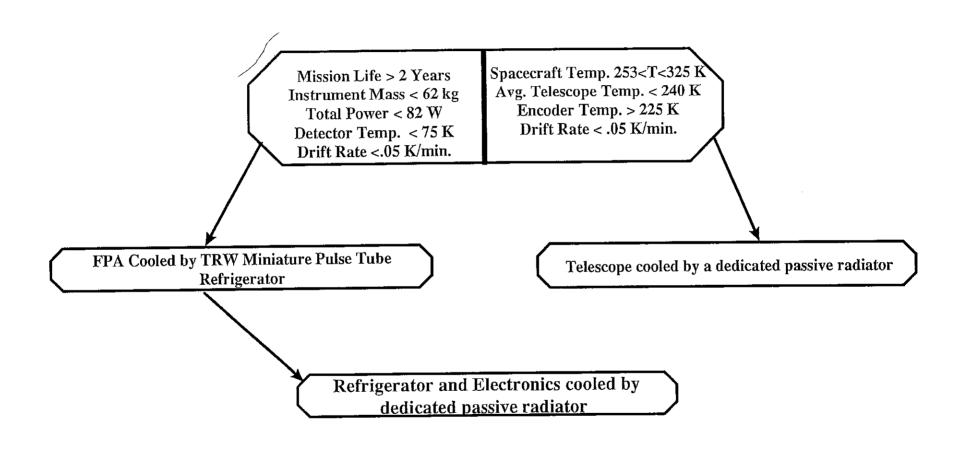
Phone: (801) 797-2951

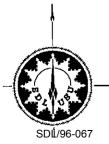
FAX: (801) 797-2417

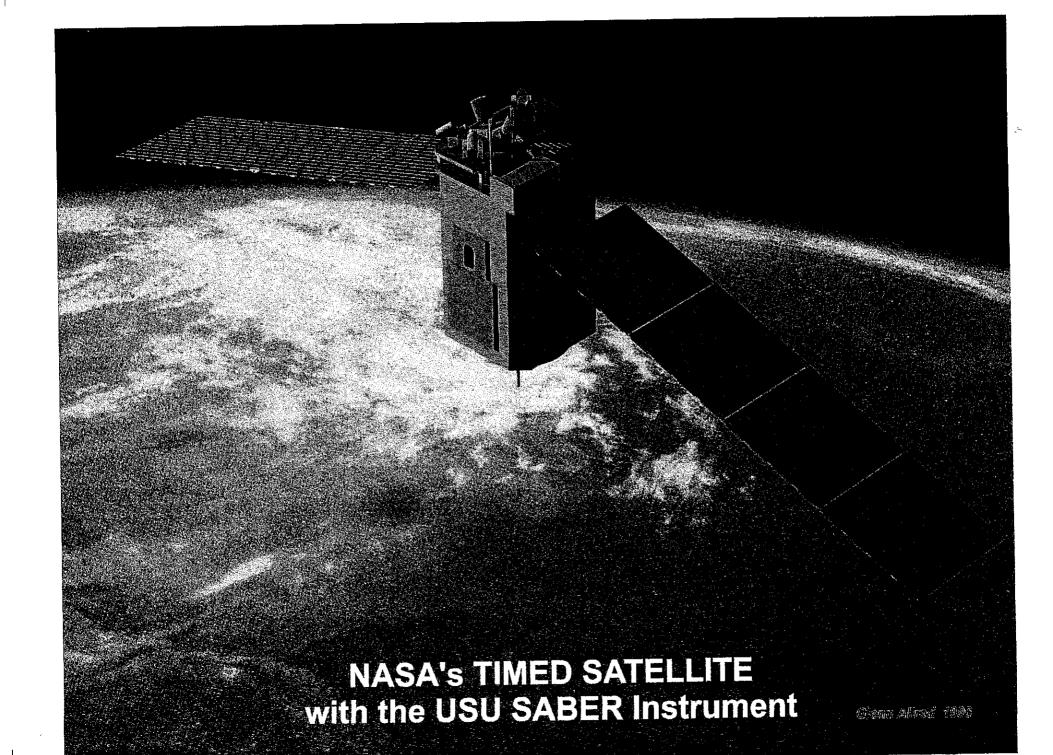
email: jcbatty@mae.usu.edu


Scott Jensen

Phone:(801)-755-4222


Fax:(801)-755-4299


email:scott.jensen@sdl.usu.edu

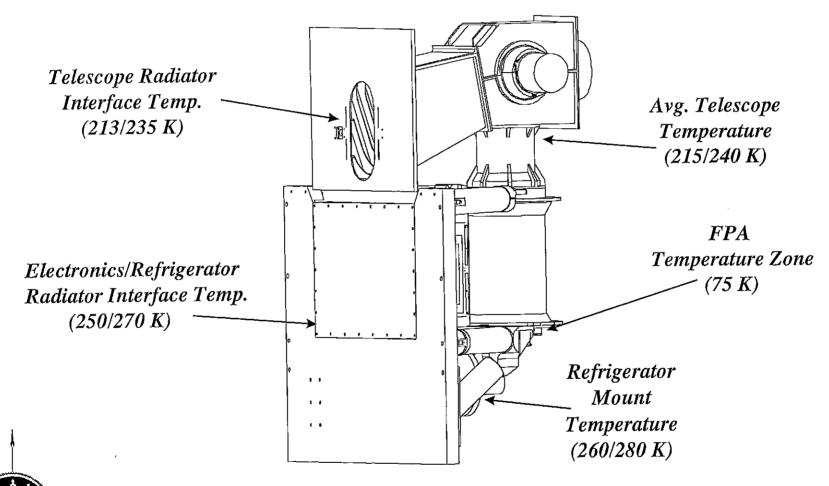

December 10-12, 1996

Thermal Flow Down Requirements

Thermal Design Assumptions

Hot Case

- Absorbtivity* =.25
- Emissivity* =.75
- Solar Flux $^{\circ}$ = 1419 W/m $^{\circ}$ 2
- Albedo[^] = 568 W/m[^]2
- Earthshine[^] = 268 W/m[^]2
- Beta Angle = 0
- Orbit Altitude = 600 km
 - Circular
- Inclination = 74.5 degrees
- Spacecraft Temperatures[^]
 - +Y Panel = 303 K
 - Interior = 323 K


Cold Case

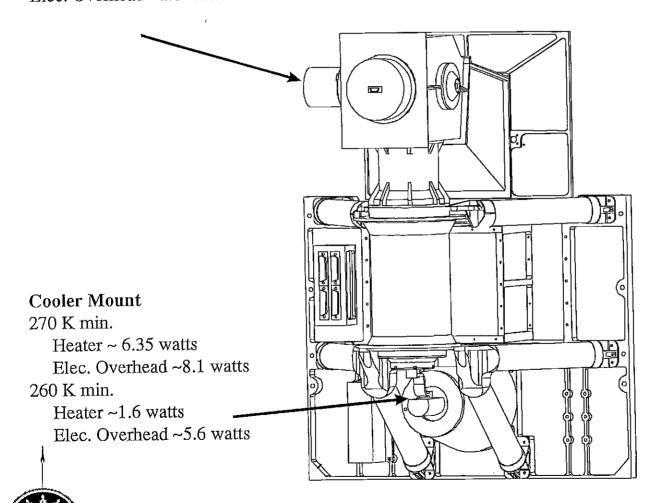
- Absorbtivity* =.08
- Emissivity* =.78
- Solar Flux $^{\wedge}$ = 1286 W/m $^{\wedge}$ 2
- Albedo $^{\circ}$ = 257 W/m $^{\circ}$ 2
- Earthshine[^] = 189 W/m[^]2
- Beta Angle = 90
- Orbit Altitude = 600 km
 - · Circular
- Inclination = 74.5 degrees
- Spacecraft Temperatures^
 - +Y Panel = 253 K
 - Interior = 253 K

^{*} Numbers recommended by NASA ^ Provided by APL

Overview

Preliminary Design Review SABER
SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

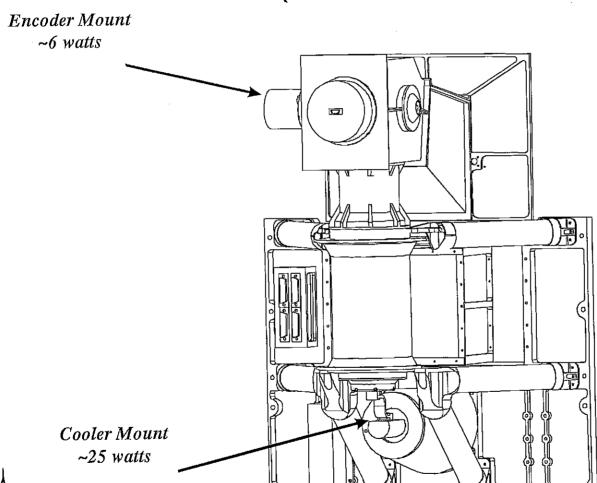
5


Operational Heaters

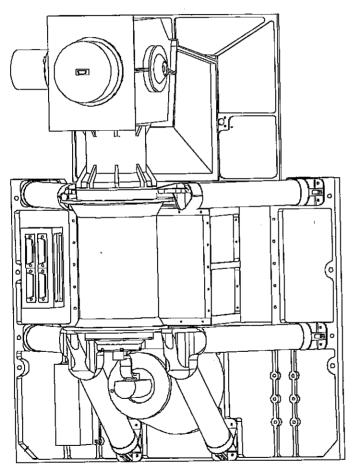
Encoder Mount

Heater~ 1.4 watts

Elec. Overhead~ 1.0 watts

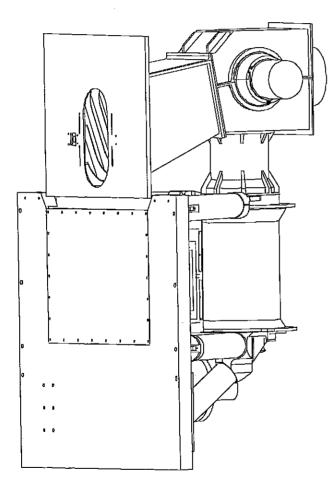

(Cold Case)

Preliminary Design Review SABER
SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY


Survival Heaters

(Cold case non-operating)

Telescope Temperature Zone



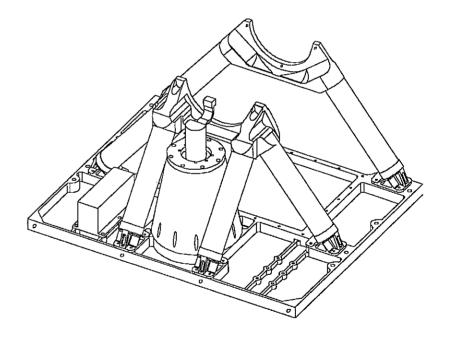
- Cooled by passive radiator (+Y Panel)
 - Radiator Interface Temp. 213/235 K
- Radiator Area = .185 m^2
- Temperature difference across telescope
 - Less than 12 K
- Thermally isolated from spacecraft by G-10 struts and MLI blanketing

Telescope Radiator

(Baseline Area = $.185 \text{ m}^2$)

Balances

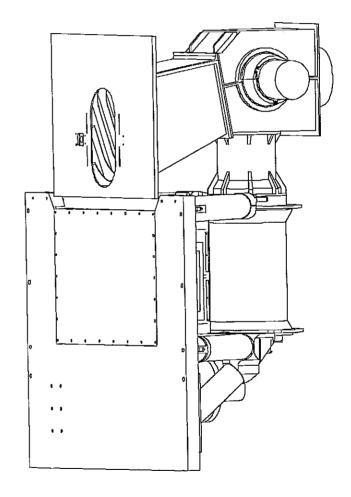
- Hot Case
 - · Maximum average temperature in telescope approximately 240 K
- Cold Case
 - · Heater power required to keep encoder temperature at least 225 K is reasonable (~2.4 Watts)
- Increasing radiator area to maximum available
 - Reduces maximum average temperature in telescope
 - Increases encoder heater power
 - Increases mass of instruments


Telescope Radiator Power Summary

Description	Operational (Hot Case)	Operational (Cold Case)	Survival
Scan Motor	2.5	2.5	0
Encoder Assembly	1.0	1.0	0
IFC Blackbody	0.3	1.5	0
Chopper	0.1	0.1	0
Encoder Mount Heater	0.0	1.4	6.0
Conduction Parasitics	0.7	0.8	0.0
Radiation Parasitics	6.9	1.7	0.0
TOTAL	11.5	9.0	6.0

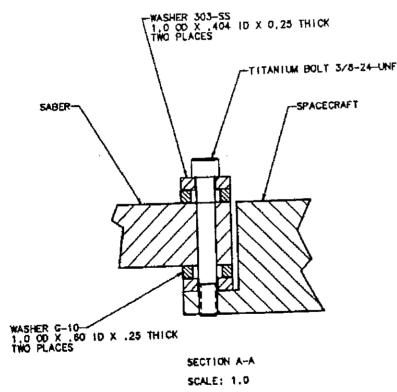
Refrigerator/Electronics Temperature Zone

- Cooled by passive radiator (+Y panel)
 - Radiator Interface Temp. 250/270 K
- Radiator Size = .46 m^2
- Thermally isolated from spacecraft by G-10 washers and MLI
- Minimum cooler reject temperature set to 260 K
- Delta T across cooler mount ~ 10 K



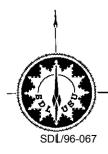
Refrigerator Electronics Radiator

(Baseline Area =.46 m^2)


- Balances
 - Hot Case
 - For refrigerator heat reject temperature of 280 K refrigerator capacity is 380 mW
 - Cold Case
 - Compressor+Heater+Elec.
 Overhead:

- Using total area currently available
- Reducing area would
 - Increase refrigerator hot case reject temperature (reduces margin)
 - Decrease power required to keep refrigerator mount at specified temperature

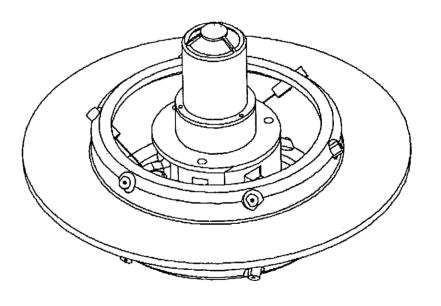
S/C Thermal Standoff



- Number of bolts = 8
- S/C interface resistance 2.0
 K/W
- Hot case heat leak
 - 17.5 watts received from s/c
- Cold case heat leak
 - Set Point of 260 K
 - 1.5 watts received from S/C
 - Set Point of 270 K
 - 1.5 watts delivered to S/C

Electronics Radiator Power Summary

*	perational Hot Case)	Operational (Cold Case)	(Cold Case)	Survival
	<u> </u>	Cooler @ 270 K	Cooler @ 260 K	Cooler @ 250 K
ator	18.6	16.0	14.3	0.0
Iount Heater	0.0	6.4	1.6	25.0
ics	32.8	41.9	39.4	0.0
lectronics	7.0	7.0	7.0	0.0
ion Parasitics	17.5	1.5	-1.5	0.0
n Parasitics	1.5	0.0	0.0	0.0
at To Radiator	77.4	<i>72.8</i>	60.8	25.0
strument Power	62.3	77.8	68.8	
strument Power	62.3	77.8	68.8	

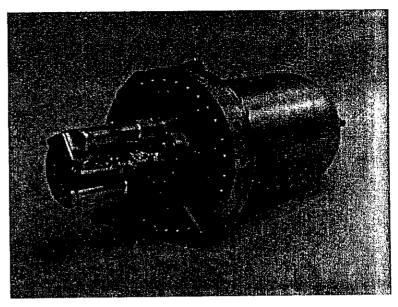


Preliminary Design Review SABER
SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

FPA Temperature Zone

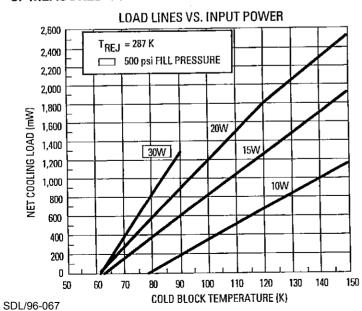
- Cooled by TRW miniature pulse tube refrigerator
 - Operating temperature 75 K
- Utilizes Fiber Support Technology (FiST) to support FPA
- **FPA POWER SUMMARY** (Test Adjusted SINDA Model)

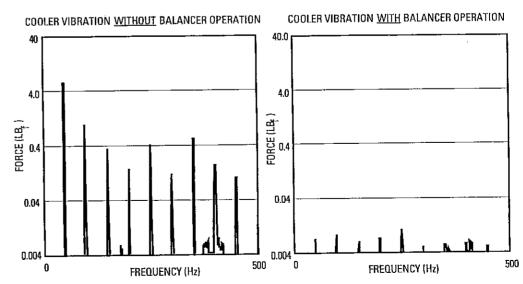
,	Desc	<u>cription</u>	Hot Case	Cold Case
		Supports	4.0	4.0
	_	Wiring	54	48.0
	_	Detectors	35	35.0
	_	Aperture	60	45.0
	_	Radiation	172	125.0
	_	TOTAL	<i>325</i>	253.0


Miniature Pulse Tube Space Cooler

A. INTERNALLY **BALANCED COOLER**

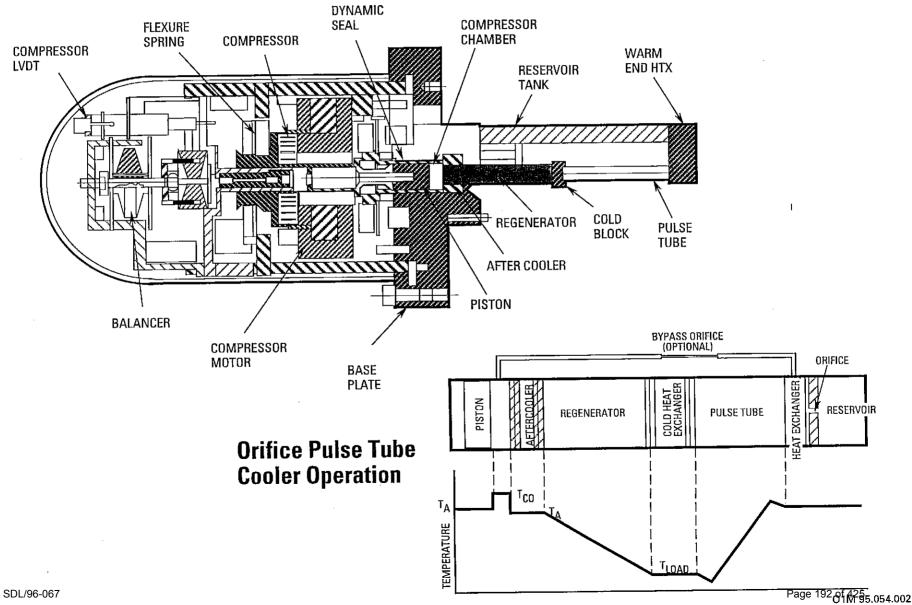
B. SPECIFICATIONS


WEIGHT (Kg) <0.02 Lbf rms **VIBRATION** 2.0 COOLER **ELECTRONICS** 5 YEARS/ LIFE/RELIABILITY (INCLUDES 883 0.96 RATED POWER (WATTS) **ELECTRONICS**) COOLER 20 **ELECTRONICS** 26 FOOTPRINT (IN. 2) COOLER 50


TRW's MINIATURE PULSE TUBE COOLER

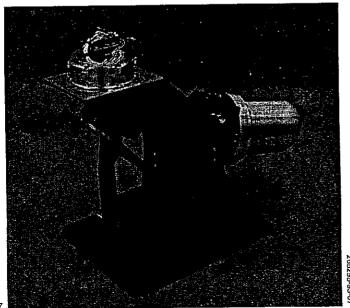
C. MEASURED COOLER PERFORMANCE

ELECTRONICS

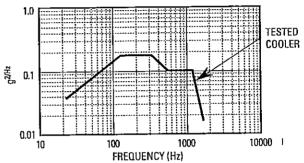

55

R1M 94.0109.06a Page 191 of 425

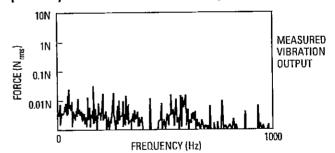
Cross-Section of the TRW Miniature Pulse Tube Cooler



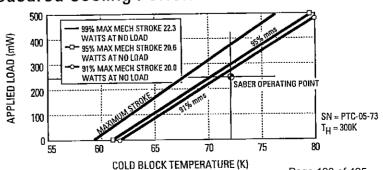
Off-the Shelf Cooler Design


Heritage

- Result of seven years of development using Oxford cooler technology
- Developed for Brilliant Pebbles against a reliability-driven, non-redundant cooler mission need
- Designed for 10-year life with 95% reliability
- Designed for weight-constrained spacecraft
 - Cooler weight: 4.4 lb



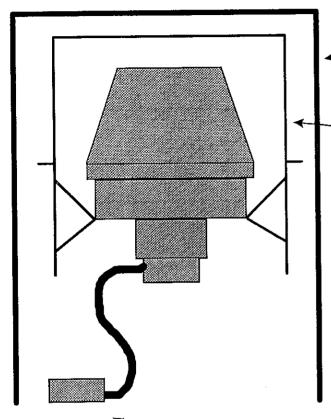
Performance


Qualified for space launch unit vibrated to 14 gms

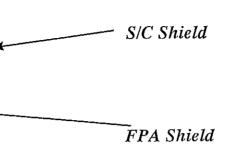
Adaptively balanced for low-jitter operation

• Measured Cooling Performance

SDL/96-067

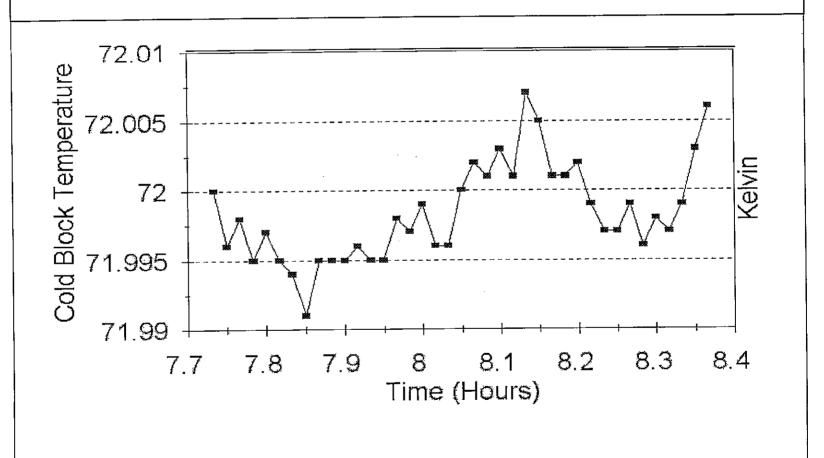

Page 193 of 425 O IM 95.054.005

Refrigerator Capacity

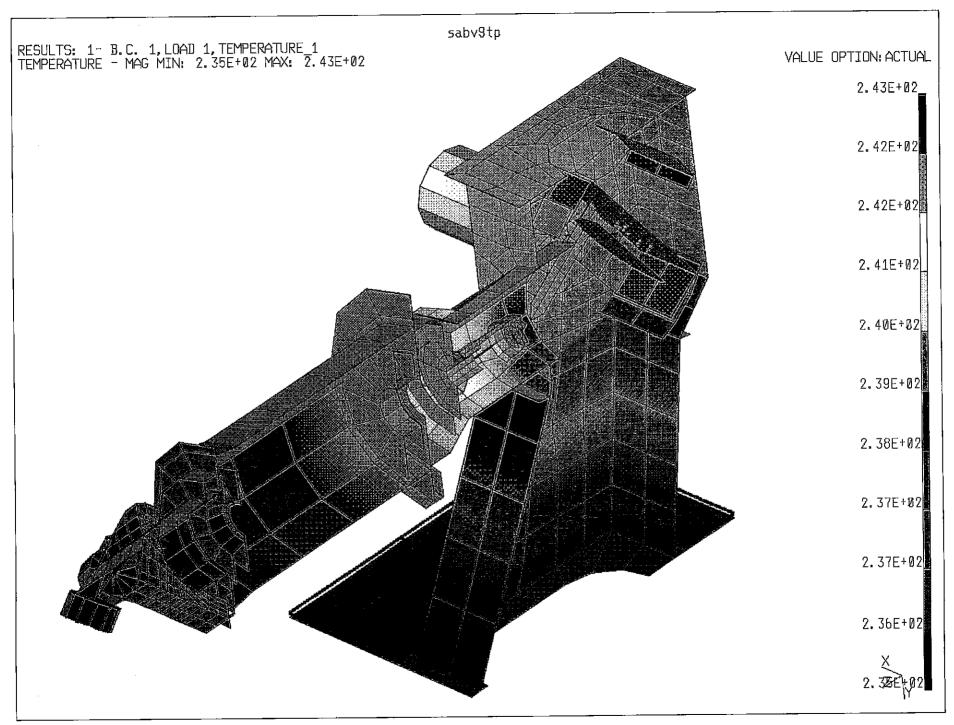

Baseplate Temperature (K)	Cold Block Compressor Temperature Power (K) (W)		Cooling Capacity (mW)		
290	72	20	270		
290	72	22.4	330		
290	73.5	20	315		
280	72	20	380		
280	72	18	320		
280	73.5	20	425		
270	72	20	500		
270	72	16.5	260		
270	73.5	20	545		
260	72	20	620		
260	72	14.5	250		
260	73.5	20	665		

FPA Breadboard Test Results

Cold Block


Reject Temperature (K)	Cold Block Temperature (K)	FPA Shield Temperature (K)	S/C Shield Temperature (K)	Compressor Power (W)	Calculated Heat Load (mW)
272.0	72.0	218.0	258.0	16.34	238.0
272.0	72.0	240.0	260.0	17.15	<i>299.0</i>
273.5	73.4	225.0	293.0	16.85	260.0
284.0	72.0	240.0	323.0	20.68	425.0

Preliminary Design Review SABER
SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY


COLD BLOCK STEADY STATE TEMPERATURE DRIFT

(TEST #9)

Preliminary Design Review SABER SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY


SUMMARY OF TEMPERATURES (SINDA Model)

Description	Operational (Hot Case) (K)	Operational (Cold Case 260) (K)
Telescope Rad. Interface	235.0	213.0
Elec./Ref. Rad. Interface	270.0	250.0
Motor/Encoder Assemby	247.5	225.0
Scan Mirror	245.5	222.0
Chopper Base	242.0	218.0
FPA Mounting Ring	243.0	219.0
Detector Plane	73.6	73.3
Refrigerator Cold Block	72.0	72.0
Electronics Radiator	270.0	250.0
Cooler Mounting Flange	280.0	260.0
Electronics Junction	<320.0	<320.0

Thermal Risk Reduction

- Fabricate focal plane assembly breadboard (FiST)
- Developed low impedance-flexible thermal links
- Conducted tests with TRW pulse tube refrigerator-FPA Mount
- Improved radiation isolation from S/C

Summary

This thermal design provides

- Ample margin in refrigerator capacity even in extreme hot case
- Adequate telescope radiator area to operate in extreme hot case
- Ample heater power to operate in extreme cold case
- Sufficiently stable temperatures

AND THUS...

Meets all flowdown requirements

ELECTRONICS OVERVIEW

Mark D. Jensen

December 10, 1996

Phone: (801) 755-4245

Fax: (801 755-4299

E-Mail: Mark.Jensen@sdl.usu.edu

Electrical Assembly Specifications (1 of 7)

Parameter	Source	Requirement	Specification	Units	Comments
GENERAL			<u> </u>		
Operation Modes	IRD	Off Power-up Safe Stabilization Standby Calibrate Data Collection Diagnostic/ Reprogram	Off Power-up Safe Stabilization Standby Calibrate Data Collection Diagnostic/ Reprogram		
Power	GIIS	~60.8 ~66.8	64.0 74.0	Watts Watts	average peak
Voltage range	GIIS	28 +6/-6	28 +6/-6	Volts	g the state of
S/C Data Interface	GIIS	MIL1553	MIL1553		configuration described in GIIS
Data Packet Length	GIIS	2096	2096	bits	
Data Transfer Rate	GIIS	1.894 (125/66)	1.894 (125/66)	pkt/sec	
Command Packet Length	GIIS	2048	2048	bits	
Command Transfer Rate	GIIS	2kBytes	2kBytes	/day	maximum
Status Link	GIIS	16	16	bits/sec	
Communication Format downlink uplink	GIIS GIIS	CCSDS	CCSDS		

SABER Preliminary Design Review
SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

Electrical Assembly Specifications (2 of 7)

Parameter	Source	Requirement	Specification	Units	Comments
GENERAL (cont.)				<u> </u>	
Reliability	IRD	2	2	years	mission life
Radiation hardness Latch-up SEU	GIIS	no latch-up non fatal	no latch-up		
Total Dose		5	5	krad	

Electrical Assembly Specifications (3 of 7)

Parameter	Source	Requirement	Specification	Units	Comments
SIGNAL PROCESSING				<u> </u>	
Radiometric accuracy and precision	IRD	NEN = 3 LSB	NEN = 3 LSB	<u> </u>	in highest gain range
Electronic Stability	IRD	< 1 NEN			between space looks
Dynamic Range (required NEN to Max Sig.) Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6 Channel 7 Channel 8	IRD	18,985 71,749 71,749 57,738 85,234 30,745 7,632 850	48,976 204,134 204,134 436,606 213,823 741,367 84,996 3,226		
Channel 9		360 14,300	1,513 56,229	İ	
Channel 10 Preamp Type	SYS	PC Ch. 1-5 PV Ch. 6-10	PC Ch. 1-5 PV Ch. 6-10		driven by electro /optical detector choice
Integration time	IRD	0.110	0.110	sec	4.545 Noise Equivalent bandwidth
Sample Rate	IRD	5	5 22.73	/IFOV /sec	
Chopper frequency	SYS	1000	1000	Hz	radiometric require.

SABER Preliminary Design Review
SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

Electrical Assembly Specifications (4 of 7)

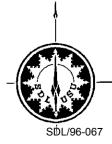
Parameter	Source	Requirement	Specification	Units	Comments
SYSTEM CONTROL AND					
DATA HANDLING					
Data Formatter	IRD	format data	2 op. modes		
Data Collection					normal mode for Data
Data sample rate	IRD	5	5 (22.73 s/s)	/IFOV	Collection, Calibrate,
Control	SYS	on/off	on/off	_	Diagnositc/Reprogram
Housekeeping sample rate	SYS		0.0902	/sec	modes
Packet rate	GIIS	1.894	1.894 (125/66)	/sec	
Bit rate	GIIS _	3969.7	3969.7	/sec	
Housekeeping	SYS	•		_	normal mode for
Data sample rate	SYS		0	/sec	Power-up, Safe,
Housekeeping sample rate	SYS		0.0902	/sec	Stabilization, Standby
Packet rate	GIIS	0.0395	0.0451	/sec	
			(125/2772)	/sec	
Bit rate	GIIS	82.7	94.5	/sec	
System Controller			<u> </u>		
Commands	IRD	stored	512 cmds		automated routines
	IRD	uplink	512 cmds		RAM buffer
interrupts	SYS	1. Power down	1. Power dwn		
	SYS	2. S/C Yaw	2. S/C Yaw		
	IRD	3. Uplink cmd	3. Uplink cmd		
	SYS	4. Timer	4. Timer	<u> </u>	

SABER Preliminary Design Review
SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

Electrical Assembly Specifications (5 of 7)

Parameter	Source	Requirement	Specification	Units	Comments
System Controller (cont.)					
Adaptive Scan Reference Function	SYS SYS	ON/OFF Update/scan up and down Set @ % of peak radiance of Channel #1 CO2 narrow	ON/OFF Update/scan up and down Set @ 50% of peak radiance of Channel #1 CO2 narrow		System Controller function
Timer	SYS	Interrupt System Controller @ preset UT	Interrupt System Controller @ preset UT		

Electrical Assembly Specifications (6 of 7)


Parameter	Source	Requirement	Specification	Units	Comments
Scan Mirror Controller					
Scan velocity	SYS	0.194	0.194	°/sec	
Slew velocity	SYS	29.62	29.62	°/sec	
Scan mirror jitter	IRD	≤3	≤3	arcsec	
Encoder resolution	IRD	1.236	1.236	arcsec	
Command resolution	SYS	0.088	0.088	0	
ANALOG CONTROLLERS	T				
Blackbody Controller				<u> </u>	
Temperature Set Range	SYS	218-280	215-280	K	in flight adjustable
Stability	SYS	0.1	0.028	K	IRD 1% residual scale error
Jones Source Controller				·	
Temperature Set Range	SYS	1800	<2100	K	in flight adjustable
Stability	SYS	<1.0	<1.0	K	worse case
Operational Heater Cntl.					
Temperature set point	SYS	260	260	K	
(Refrigerator)		<u> </u>			
Temperature set point	SYS	225	225	K	
(encoder)			<u> </u>	<u> </u>	
Power (Refrigerator)	SYS	8	18	Watts	
Power (Encoder)	SYS	1	2.25	Watts	

SABER Preliminary Design Review
SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

Electrical Assembly Specifications (7 of 7)

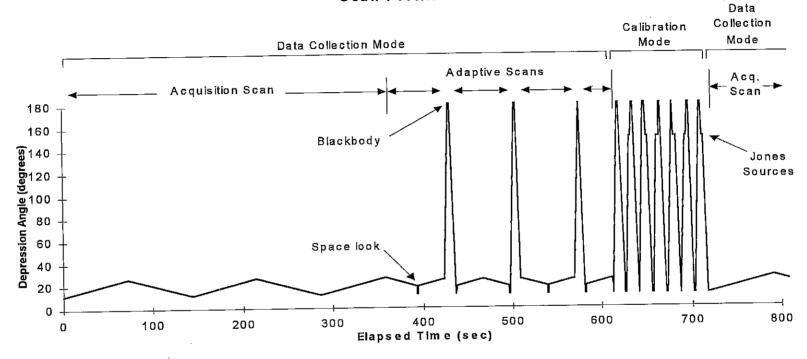
Parameter	Source	Requirement	Specification	Units	Comments
CHOPPER CONTROL AND SYNC					
Chopper Control					
Operating frequency	SYS	1.0	1.0	kHz	free running
Chopper Sync				·	
Delay per channel	SYS	adjustable	0-360, 0.36 steps	degrees	manually adjusted
POWER CONVERTERS	1				
Isolation	GIIS	100	100 1	Volts Mohm	
Input Range	GIIS	28±6	28-12,+22	Volts	
Input transients	GIIS	-6 to 62	80	Volts	
turn on	SYS	separate groups	3 groups		
COVER DEPLOYMENT					
Method	SYS	one time throw away	one time throw away		Commanded by operator with 3 commands
Refrigerator Electronics					
Low operating limit	SYS	72	70	K	
Control	SYS	vibration cancellation	vibration cancellation		automatic, on/off operator controlled

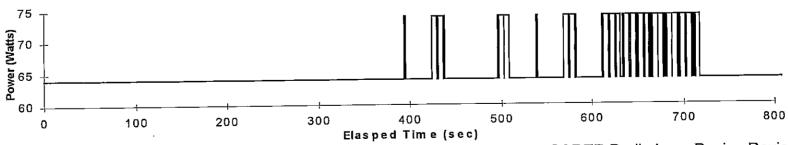
Spacecraft Interface Connectors

	Name: A500 P1	Name: A500 J2	Name: A500 P3
Pin#		Function: 1553	Function: Temperature Sensor
ГШ т	Type: DAMM15PE	Type: DEMM9SE	Type: DEMM9PE
1	+28V Main Primary	1553 Bus A	Temp Sensor 1
2	+28V Main Secondary		Temp Sensor 2
3			Temp Sensor 3
4	+28V Survival Heater		Temp Sensor 4
5		1553 Bus B	
6		1553 Bus A Return	Temp Sensor 1 Return
7			Temp Sensor 2 Return
8			Temp Sensor 3 Return
9	Main Primary Return	1553 Bus B Return	Temp Sensor 4 Return
10	Main Secondary Return		
11	Operational Heater Return		
12	Survival Heater Return		
13			
14			
15			

SABER Preliminary Design Review
SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

Spacecraft Interface Power Requirements


Assembly	AVE	RAGE POW	/ER	Р			
·	Power-up Safe	Standby Stabilize	Data Col. /Calibrate /Diagnostic	Power-up Safe	Standby Stabilize	Data Col. /Calibrate /Diagnostic	Power Uncertainty
Optics				- 0.0	0.0	6.5	
Scan Mirror (Motor & Encoder)	0.0	0.0		0.0		l	
Chopper	0.0	0.1	0.1	0.0	0.1	0.1	
Full Aperture BB and Jones Sources	0.0	1.5			1.5		
Cryogenic (Focal Plane)	0.00	0.04			0.04	<u> </u>	1
Refrigerator	17.2	20.0			20.0		
Refrigerator Electronics (RFE)	7.0	7.0	7.0	7.0	7.0	7.0	<u> </u>
Instrument Electronics							
Signal Processing	0.0						
System Control and Data Handling	9.4	9.4		l		ļ	
Analog Controllers	0.0	1.9					
Scan Mirror Controller	0.0	2.3	2.3	0.0	2.3		
Chopper Control and Sync.	0.0	0.5	0.5	0.0	l		
Power	3.3	8.6	9.5	3.3	8.6	12.0	<u> </u>
TOTAL Main Power	36.9	60.5	64.0	36.9	60.5	74.0	<u> </u>
	 	45.4	40.4	40.4	18.4	18.4	1
Operational Heaters	18.4	18.4	18.4	18.4	10.4	10.	T
TOTAL BUS POWER	55.3	78.9	82.4	55.3	78.9	92.	3


SABER Preliminary Design Review
SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

Spacecraft Interface Power Profile

Scan Profile

SABER Preliminary Design Review

SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

11

Spacecraft Interface Data Formatter Modes--Data Collection

Modes supported:

Radiometric sample rate:

Housekeeping sample rate:

Packet length:
Packet transfer rate:

Bit rate:

Data Collection, Calibration, Diagnostic

22.73 samples/sec (5.0 samples/IFOV) 0.090 samples/ sec (worst case)

2096 bits

1.894 packets/sec (125/66)

3969.7 bits/sec

Г	Packet										cket ry Header	
				Primary Hea					S/C	S/C	Format	Packet
Ī	Version Number	Pack	et Identifica	tion .	Packet S	Packet Sequence Control		Packet Data	Time (to	Time (to 1ms)	Mode	Identifier
ı								1	1sec)	11115)		ļ
1		Type Indicator	Packet Sec.	Appl. Process	Grouping Flags	Source S Co		Length				
Ì		ı	Header Flag	Identif.							l .	_
1	3	1	1 1	11	2		4	16	32	10	1 1	5
	000	6	1 4	l ii	2 2	0-16	383	255	MET	MET	0	0-23
ie L	Scan Location	Gain	CH#1	CH#2	CH#3	CH#4	CH#5	CH#6	CH#7	CH#8	CH#9 12	CH#10 12
1	20	16	12	12	12	12	12	12	12	12		
ŀ	Scan Location	Gain	CH#1	CH#2	CH#3	CH#4	CH#5	CH#6	CH#7 12	CH#8 12	CH#9 12	CH#10 12
. 1	20	16	12	12	12	12	12	12		CH#8	CH#9	CH#10
ŀ	Scan Location	Gain	CH#1	CH#2	CH#3	CH#4	CH#5	CH#6	CH#7 12	12	12	12
	20	16	12	12	12	12	12	12	CH#7	CH#8	CH#9	CH#10
1	Scan Location	Gain	CH#1	CH#2	CH#3	CH#4	CH#5	CH#6 12	12	12	12	12
	20	16	12	12	12	12	12		CH#7	CH#8	CH#9	CH#10
1	Scan Location	Gain	CH#1	CH#2	CH#3	CH#4	CH#5 12	CH#6 12	12	12	12	12
,	20	16	12	12	12	12		CH#6	CH#7	CH#8	CH#9	CH#10
	Scan Location	Gain	CH#1	CH#2	CH#3	CH#4	CH#5 12	1 12	12	12	12	12
, [20	16	12	12	12	12	CH#5	CH#6	CH#7	CH#8	CH#9	CH#10
ı	Scan Location	Gain	CH#1	CH#2	CH#3	CH#4 12	12	12	12	12	12	12
, !	20	<u>16</u>	12	12	12		CH#5	CH#6	CH#7	CH#8	CH#9	CH#10
	Scan Location	Gain	CH#1	CH#2	CH#3	CH#4 12	12	12	12	12	12	12
5	20	16	12	12	12	CH#4	CH#5	CH#6	CH#7	CH#8	CH#9	CH#10
	Scan Location	Gain	CH#1	CH#2	CH#3	12	12	12	12	12	12	12
3	20	16	12	12	12	CH#4	CH#5	CH#6	CH#7	CH#8	CH#9	CH#10
1	Scan Location	Gain	CH#1	CH#2	CH#3	12	12	12	12	12	12	12
5	20	16	12	12	12	CH#4	CH#5	CH#6	CH#7	CH#8	CH#9	CH#10
	Scan Location	Gain	CH#1	CH#2	CH#3	12	12	12	12	12	12	12
5	20	16	12	12	12	CH#4	CH#5	CH#6	CH#7	CH#8	CH#9	CH#10
	Scan Location	Gain	CH#1	CH#2	CH#3	12 12	12	12	12	12	12	12
s	20	16	12	12	_12	12	1 12	usekeeping				not used
		Con	nmand Echo)			H	ласкесына	1 (1 01 2 1) 10 40	,,,,,,,,,,,		7
s			81							L BITS	_	- 2

SABER Preliminary Design Review

SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

12

Spacecraft Interface Data Formatter Modes--Housekeeping

Modes supported:

Power-up, Standby, Stabilize, Safe

Radiometric sample rate:

0.0 samples/sec

Housekeeping sample rate:

0.090 samples/ sec (worst case)

Packet length:

Packet transfer rate:

0.045 packets/sec (125/2772) 94.5 bits/sec

Bit rate:

Г				Packet Secondary Header							
Version Number		Pac	ket Identifica	Primary He tion	Packet	Packet Sequence Control		S/C Time (to 1sec)	S/C Time (to 1ms)	Format Mode	Packet Identifier
		Type Indicator	Packet Sec. Header	Appl. Process Identif.	Groupin g Flags	Source Sequence Count	Length	ı	· .		
١	3 000	1 0	Flag 1 1	11	2 2	14 0-16383	16 255	32 MET	10 <u>MET</u>	1 1	5 0
T				<u>L</u> ;	Ног	isekeeping Sample 1 840					
r					Hot	usekeeping Sample 2 840					
 					Comr	nand Echo 315		-			not used 5
L		 -						TOT	AL BITS		

Spacecraft Interface Instrument Status Words--Telemetry Subaddress T12

Word 1		Word 2	
Bit#	<u>Description</u>	Bit#	<u>Description</u>
0 LSB	Relay 1-power group #2	0 LSB	refrigerator inhibit
1	Relay 2-power group #3	1	refrigerator vibration on/off
2	Relay 3power group #4	2	data formatter mode
3	Relay 4wax acuator primary	3	scan mirror at location flag
4	Relay 5-wax acuator secondary	4	scan mirror stall flag
5	Jones Source #1 on/off	5	system controller submodule active bit 0
6	Jones Source #2 on/off	6	system controller submodule active bit 1
7	adaptive scan reference on/off	7	system controller submodule active bit 2
8	power down interrupt	8	system controller submodule active bit 3
9	yaw maneuver interrupt	9	
10	uplink interrupt	10	
11	timer interrupt	11	
12	•	12	
13		13	
14		14	
15 MSB		15 MSB	

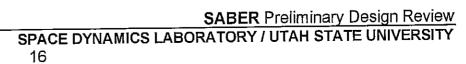
System Design Design Considerations

Minimize Noise

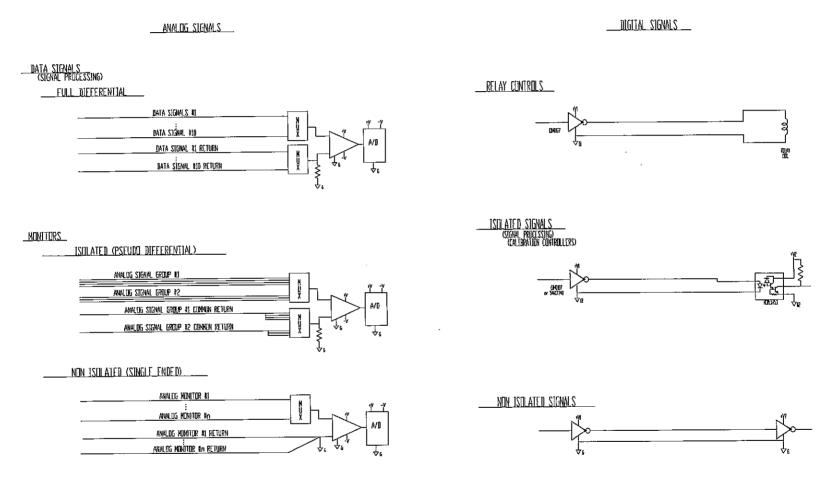
- control ground currents
 - opto-isolate digital signals in and out of signal processing unit and calibration controllers
 - separate DC/DC converters for signal processing unit
 - star power, ground, and box at DC/DC converter boards
 - differental digitization of data channels
 - pseudo-differential digitization of housekeeping signals powered by supplies other than the housekeeping supplies
- low noise power supplies
 - signal processing DC/DC converters are synchronized with system clock which controls signal processing A/D converter ⇒ controls when switching spikes occur
- multilayer boards consisting of ground and power planes
- slow system clock--1 MHz
- utilize slow digital logic
- package nose sensitive circuits away from noisy circuits
 - signal processing boards in shielded compartment
 - DC/DC converters in shielded compartment
- shielded cables
 - shield individual channels to and from focal plane

System Design Design Considerations (cont.)

Minimize power consumption


- low power analog circuitry for signal processing
 - utilize low-bandwidth, low-power LT1078 op amps
- simple state machine controllers
- efficient DC/DC converters
- · simplicity in design

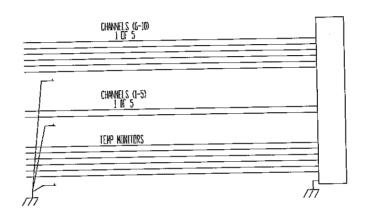
Minimize cost


- simple state machine controllers
- analog circuitry for signal processing
- simplicity in design

Maximize reliability

- design
 - utilize flight heritage
 - simplicity in design such as state machine controllers ⇒ predicted operation, not reconfigurable
- parts
 - where can use preferred parts or parts with past flight heritage
 - ensure radiation performance

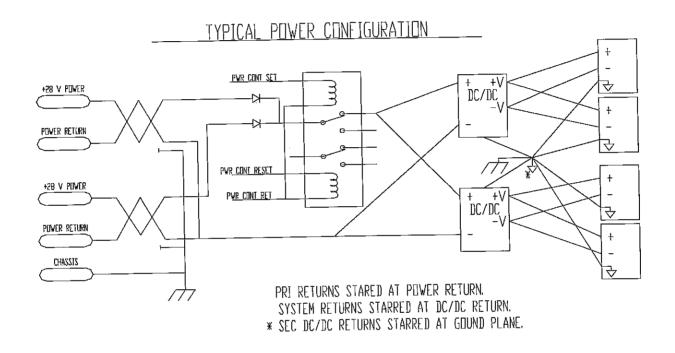
System Design Power, Ground, and Signal Interconnnects



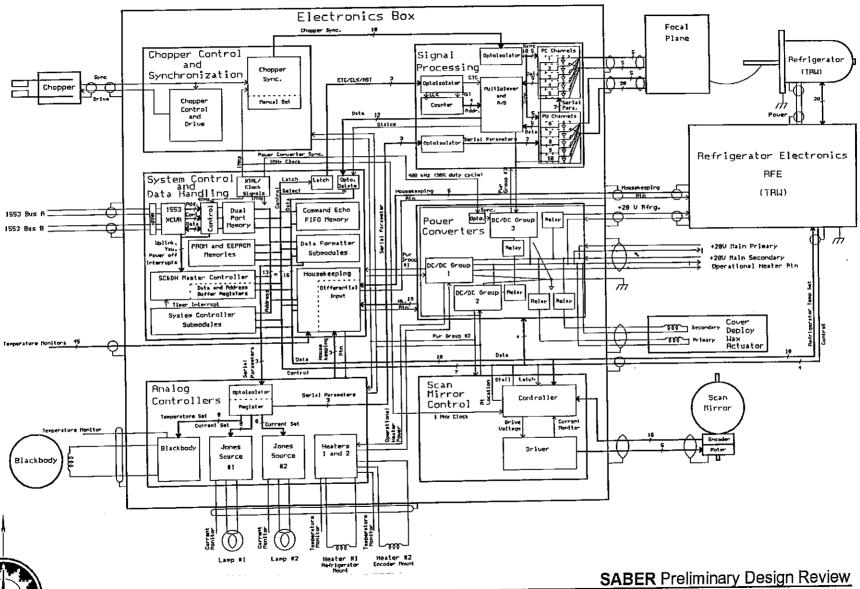
SABER Preliminary Design Review
SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

System Design Power, Ground, and Signal Interconnnects (cont.)

INTERFACE TO FOCAL PLANE




INTERFACE TO SUBUNIT / MONITORS DIGITAL SIGNAL! DIGITAL SIGNAL 2 DIGITAL SIGNAL RETURN ANALOG SIGNAL 1 ANALOG SIGNAL 2 ANALOG SJGNAL RETURN


SABER Preliminary Design Review
SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

System Design Power, Ground, and Signal Interconnnects (cont.)

System Block Diagram

SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY 20

System Design Subsystems

Signal Processing

- PC data channels (1-5)
- PV data channels (6-10)
- multiplexer and A/D converter

System Control and Data Handling (SC&DH)

- system controller
- data formatter
- 1553 Interface
- housekeeping and monitors

Analog Controllers

- calibration controllers
 - blackbody controller
 - Jones Source controllers (1 and 2)
- operational heater controllers (1 and 2)

Chopper Control and Synchronization (CC&S)

- chopper control and drive
- chopper synchronization, delay adjustment for 10 data channels coherent rectification

Scan Mirror Control

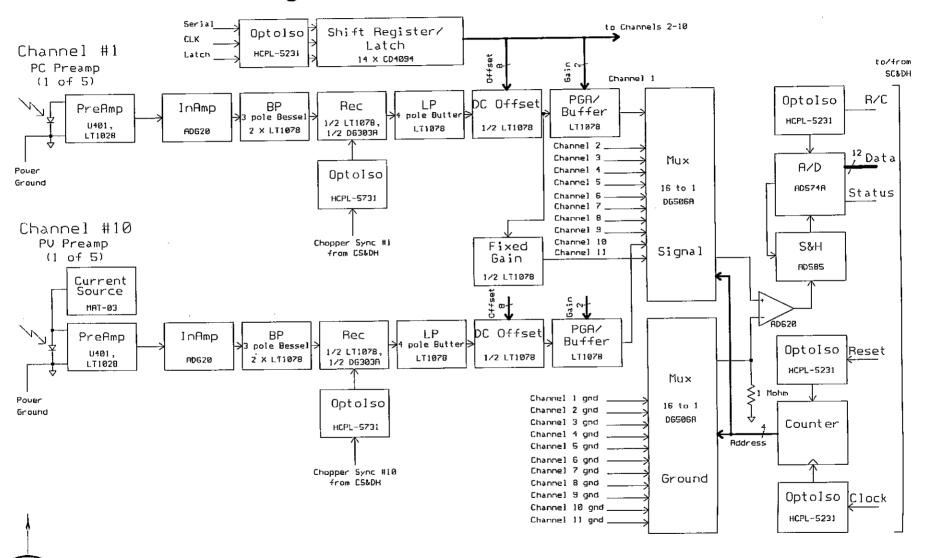
- scan mirror control and monitoring
- scan mirror driver

Power Converters

- DC/DC converters
- power switching

Refrigerator Electronics (RFE) (TRW)

 pulse tube cryocooler control and monitoring


SABER Preliminary Design Review

System Design Electronics Box Assignments and Power Dissapation

	1		Data Co	llection,	Stan	dby	Powe	er-up
			Calibration, Diagn.		Stabilize		Safe	
Вох			Average	Peak	Average	Peak	Average	Peak
Assignment	Name	System	(Watts)	(Watts)	(Watts)	(Watts)	(Watts)	(Watts)
1	PC Channels (1-5)	Signal Processing	3.4	3.4	3.4	3.4		0.0
	PV Channels (6-10)	Signal Processing	3.4	3.4	3.4	3.4		0.0
3	Mux-A/D Converter	Signal Processing	2.4	2.4	2.4	2.4	0.0	0.0
shield								
4	DC/DC Converters (3)	Power	3.3		3.3	3.3		
5	DC/DC Converters (1 and 2)	Power	10.9	13.5	10.0	10.0	8.1	8.1
shield								
6	BB/JS/Heaters/Chop C&Sync	Analog Controllers/Chopper	7.0	9.0		7.0		4.6
7	Sys. Cnt/Formatter/1553	Sys. Control & Data Handling	4.8	4.8	4.8	4.8	4.8	4.8
8	Spare							
9	Scan MirrorControl/Driver	Scan Mirror Controller	2.3		2.3			
10	Housekeeping (2)	Sys. Control & Data Handling	3.7	3.7	3.7	3.7	<u> </u>	3.7
11	Housekeeping (1)	Sys. Control & Data Handling	0.9	0.9	<u> </u>			
<u> </u>	TOTAL Box Main Power Dissapated			48.1	41.3	41.3	22.1	22.1

Signal Processing Block Diagram

SABER Preliminary Design Review

SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

Signal Processing Design Description

Method

- analog signal processing utilizing coherent rectification (synchronize with chopper)
- photo-conductive (PC) preamplifiers for channels 1-5
- photo-voltaic (PV) preamplifiers for channels 6-10
- differential multiplexed data channels into single A/D converter

Features

- · isolated preamplifiers
- 3-pole Bessel bandpass filter prior to coherent rectification ⇒ removal of unwanted chopper modulation products
- 4-pole Butterworth final lowpass filter ⇒ removal of 2nd harmonic created by coherent rectification
- uplink programmable DC offset adjust ⇒ nulling of dark offset created by warm optics
- programmable gain amplifier (PGA) ⇒ increase dynamic range of electronics
 - intermediate gain ranges used to maintain S/N > 100
 - automatic or manual gain changes
- fixed gain channel 1 output used for adaptive scan reference computation (channel 11)
- differential input multiplexer ⇒ data channel isolation

Heritage

Warm InfraRed Radiometer (WIRR)

SABER Preliminary Design Review

SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

24

Signal Processing Status

Preliminary Design: complete

Preliminary Schematic: complete

Parts List: active and passive

Analysis:

preamp noise sources

system noise

DC drift

PGA linearity

power requirements

Studies:

 signal processing methods and modeling (coherent rectification)--document written in support of MathCAD system model

Breadboarding:


- 2 complete channels with digitizer (PC and PV)
 - noise measured at 67% required
 NEN

Simulation and Modeling:

- MathCAD system noise model
 - signal response
 - system noise
 - Signal to Noise ratio (S/N)
- MathCAD Preamp noise model
 - noise components vs frequency
- PSPICE
 - AC (frequency response)
 - preamps, bandpass, coherent rectification, lowpass, PGA
 - DC
 - · offset, PGA
 - Transient (step response)
 - preamp, bandpass, coherent rectification, lowpass, PGA, system
 - Temperature
 - PGA

System Control & Data Handling Block Diagram

SABER Preliminary Design Review

SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

System Controller & Data Handling Design Description

Method

- 1553 isolated by dual-port RAM
- integrated system control, and data formatter sharing common bus and memory
- time multiplexed control ⇒ system controller bus activity during data formatter dead time
 - all modules run synchronous with each other
- 1553 controller, main controller, and submodules are state machine implementated in firmware (ACTEL A1020 2.0 μ)
 - ⇒ predicted operation--limited number of states, all states defined, recoverable from upset
 - ⇒ not reconfigurable, issures reliability
- commands identifying order of submodule execution, stored in PROM
- parameters needed by submodules stored in EEPROM and RAM
- uplink commands stored in RAM--not permanently retained
- parameters of permanently stored commands can be altered by uplink command

Heritage

Skipper, CADO, Bowshock I,II

System Controller & Data Handling Design Description (cont.)

System Controller Features:

<u>Can</u>

- take appropriate action for the following interrupts (in order of priority):
 - power down ⇒ safe mirror, turn off subsystems in an orderly manner
 - s/c yaw maneuver ⇒ safe mirror
 - uplink commands ⇒ halt operation and execute new commands
 - timer ⇒ when timer trips, execute timer handler commands
- after interrupts, return to where interrupted
- Uplink Control
 - single commands or blocks of commands in each uplink packet
 - change command parameters (permanent)
 - change parameters associated with subunits such as refrigerator temperature, blackbody temperature, Jones source current, dark offsets on each channel (permanent)
 - return to command where interrupted or new command location
 - will remain in uplink mode until return is sent

- switch subunits on/off
- cage/uncage, vibration cancellation on/off for refrigerator
- · deploy cover, control time wax actuators are on
- change data formatter mode to data collection, or housekeeping
- move scan mirror to any location
- reset scan mirror if command is not executed
- loop back in command blocks (# of times is changeable)
- set any or all programmable gains or allow automated operation
- · change which command blocks are executed
- halt operation until a parameter comes within range such as refrigerator, blackbody, or heater temperature
- halt operation up to 1.82 hours
- halt operation until a certain UT within 16 min.
- halt operation until an uplink command
- control operation of the adaptive scan reference calculation in conjunction with the data formatter
- executed commands with associated data parameters are echoed in downlink data stream

SABER Preliminary Design Review

SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

System Controller & Data Handling Design Description (cont.)

System Controller Features: (cont.) Cannot

- cannot overwrite existing commands
- cannot uplink permenant commands
- cannot overwrite sub-unit control (firmware)
- no loop back capability in uplink command list (illegal)
- cannot exit from power down interrupt—only exit is for the s/c to follow through and remove power
- an uplink cannot cause an exit from yaw maneuver interrupt—only exit is yaw interrupt flag is reset by s/c or power down interrupt

Data Formatter Features:

Can

- two formats--data collection and housekeeping
- sample data channels at every 44 ms (22.73 samples per second)
- complete sample of housekeeping every 25.3 seconds
- implement user determined telemetry matrix stored in PROM--format can be altered on ground only by burning a new PROM

Data Formatter Features:

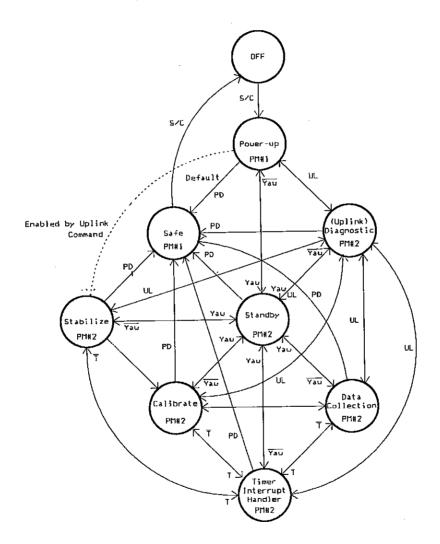
Can (cont.)

- update parameters needed by other systems-rate determined by frequency of command in PROM telemetry matrix
- · insert CCSDS header
- insert time to 1 ms resolution
- monitor SABER status--relays, Jones sources on/off, adaptive scan reference on/off, refrigerator cage/uncage, refrigerator vibration on/off, data formatter mode, active interrupts, scan mirror status, system controller submodule active
- echo commands and data parameters executed by the system controller
- scan mirror location

Cannot

- · cannot be turned off
- cannot overwrite existing telemetry matrix formats stored in PROM
- cannot change sampling rate of data or housekeeping
- cannot change the rate parameters are updated to other systems

SABER Preliminary Design Review


System Controller & Data Handling Design Description (cont.)

1553 Features:

- ILC DDC BUS-65142 remote terminal hybrid
- dual redundant bus capability
- supports all 13 mode codes
- mode code/command word illegalization
- DMA type transfers
- built-in-test word register
- continuous self-test

System Controller & Data Handling System Controller Function

Interrupts (in order of priority):

PD = power down

Yaw = S/C yaw maneuver

UL = uplink

T = timer

Power Modes:

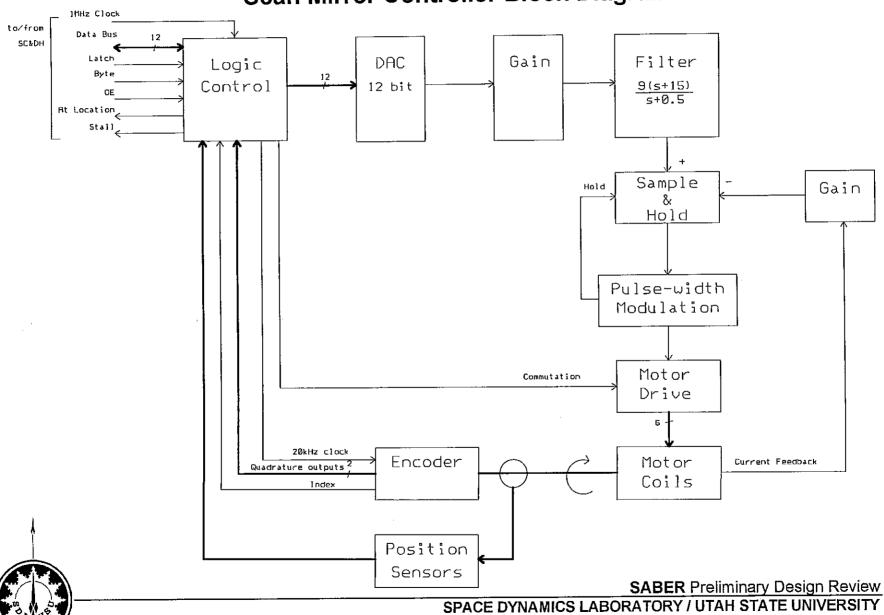
PM#1--SC&DH, Operational Heaters PM#2--SC&DH, Operational Heaters, Analog Controllers, Scan Mirror, Chopper Control and Sync, RFE

System Controller & Data Handling Status

Preliminary Design:

- state diagrams: complete
- VHDL code: complete, compiled
- FPGAs defined, code compiled, fit checks, preliminary pin assignments
- · commands defined
- · command blocks defined

Preliminary Schematic: complete


Parts List: active and passive

Simulation:

- Viewlogic simulations
 - main controller
 - submodules
 - supporting logic

Scan Mirror Controller Block Diagram

33

Scan Mirror Controller Design Description

Method

- closed-loop control of mirror using conventional analog circuitry with digital interface
- velocity feedback control
- pulse-width modulation (PWM) drive
- motor commutation derived from hall-effect sensors

Features

- scan control independent of instrument control
- command format
 - position (12-bit)
 - rate (scan or slew) (1-bit)
- brushless DC servo motor for scan mirror positioning
 - direct drive, pancake configuration allows integration into mirror mechanism
- 20 bit BEI relative optical encoder
 - quadrature output with single index

Heritage

BEI heratage: numerous programs such as SEAWIFS, UARS, HUBBLE

Scan Mirror Controller Status

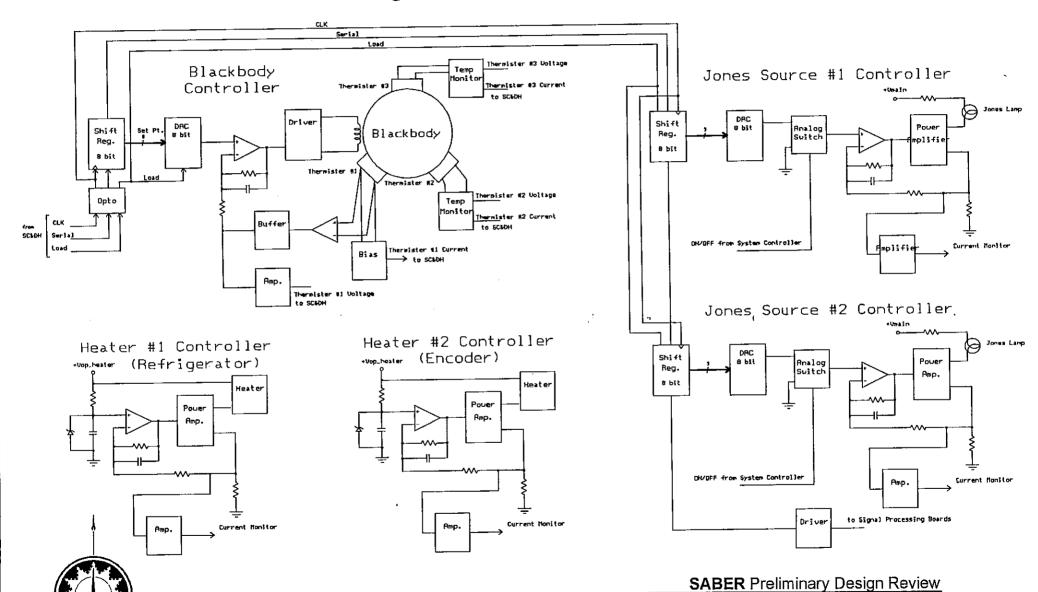
Preliminary Design: complete

Preliminary Schematic: complete

Parts List: active and passive

Analysis:

gain calculations


power requirements

Simulation:

- MatLab control law model (Frank Peri--LaRC)
- **PSPICE**
 - AC (frequency response)
 - · filters
 - Transient
 - filters, pulse width modulation, drive circuitry

Analog Controllers Block Diagram

SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

36

Analog Controllers Design Description

Blackbody Controller

Method

phase-lag analog linear controller

Features

- adjustable temperature set point changed by uplink command
- temperature range--218 to 280 K
- nominal temperature--250 K

Heritage

SPAS

Heater Controllers

Method

phase-lag analog linear controller

Features

- fixed temperature set point
- nominal temperature--255 K
- heater power range
 - refrigerator--0 to 18 W, 8 W nominal
 - encoder--0 to 2.25 W, 1 W nominal

Jones Source Controllers

Method

· phase-lag analog linear controller

Features

- adjustable lamp current set point changed by uplink command
- current set range 0 to 35.7 mA (0 to 2172 K bulb temperature)
- nominal setting--23.4 mA (1578 K bulb temperature)

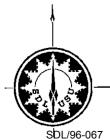
Heritage

SPIRIT III

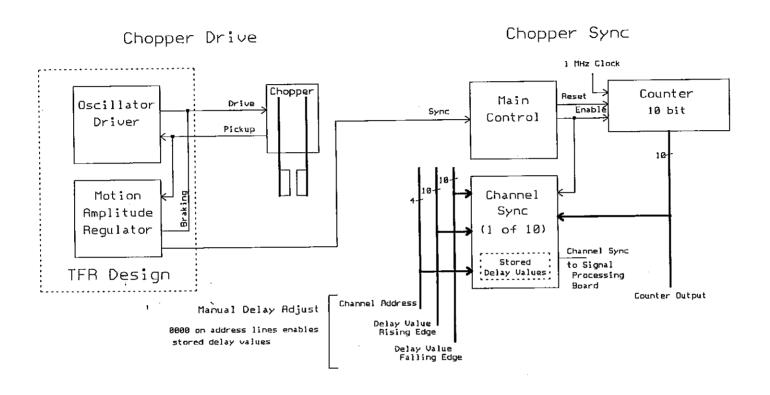
Analog Controllers Status

Preliminary Design: complete

Preliminary Schematic: complete


Parts List: active and passive

Analysis:


- power requirements
- blackbody controller
 - stability vs temperature and time
- Jones Source controllers
 - SPIRIT III analysis

Simulation:

- blackbody controller
 - MatLab control law model
 - stability
 - · turn-on transient
- Jones Source controllers
 - **PSPICE**
 - Transient (step response)

Chopper Control and Sync Block Diagram

SABER Preliminary Design Review

SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

Chopper Control and Sync Design Description

Chopper Control and Drive (TFR design)

Method

free running oscillator drive, operates at chopper mechanical resonant frequency

Features

- motion amplitude regulator
- chopper sync output

Heritage

CIRRIS 1A

Chopper Synchronization

Method

· digital delay set for each channel

Features

- delay set in 1 μsec steps
- delay adjustment for both rising and falling edge ⇒ adjustable duty cycle
- manual adjustment for each channel with final values stored in firmware

Heritage

CIRRIS 1A

Chopper Control and Sync Status

Preliminary Design:

- chopper controller--TFR design
- chopper synchronization
 - analog design complete
 - logic design--state diagrams complete

Analysis:

power requirements

Preliminary Schematic: complete

Parts List: active and passive

Refrigerator Electronics (TRW) Description

Description:

- SSTI Pulse Tube Cryocooler Control Electronics (PTCCE) built by TRW
 - three 4.0" X 6.0" PC boards
 - control board
 - · analog board
 - power filter & DC/DC converter board
- drives motor of the cryocooler
- monitors temperature, position, and acceleration sensors of the cryocooler
- provides temperature control and vibration control (Adaptive Vibration Cancellation)
- interfaces for command, housekeeping, and 28 V primary power
- commands for temperature setpoint overide default setpoint
- provides tripout if an overstroke condition occurs, resets and resumes operation
- motor frequency between 32 to 127 Hz set with eight on board jumpers
- cycling power will reset the PTCCE to its normal operating mode and default temperature setting
- primary and secondary DC/DC converters, (can switch between units)

Refrigerator Electronics (TRW) Interface

Cryocooler interface

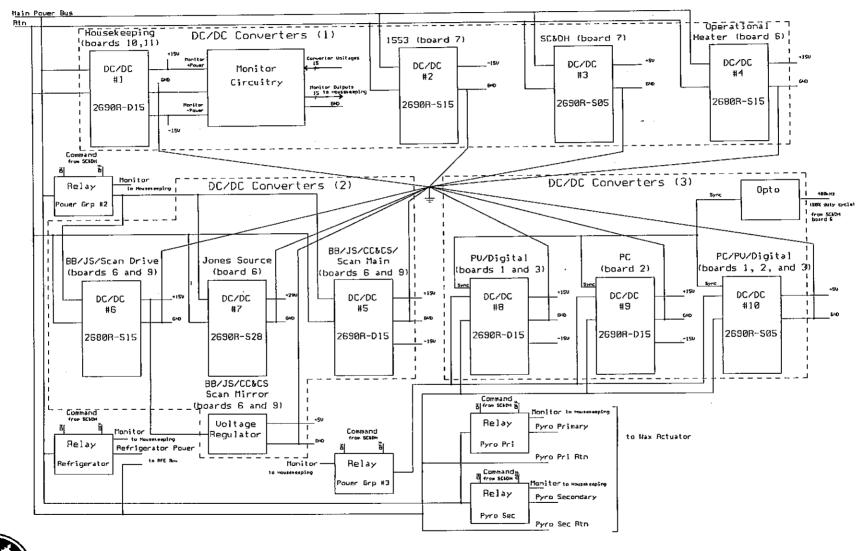
Temperature command

- 10 bit bus with command word
- temperature command write--latches in temperature command word

Discrete commands

- Vibration on/off
- motor cage (relay)
- motor uncage (relay)
- primary DC/DC converter enable
- secondary DC/DC converter enable
- switch to primary DC/DC converter (relay)
- switch to secondary DC/DC converter (relay)

Power inputs


- +28 ± 6 Volts
- 5.5 Watts

Housekeeping Analog Channels

- accelerometer (0-5V ac)
- cold finger temperature (0-5V dc)
- compressor position (0-5V ave.)
- compressor motor current (0-5Vave.)
- balancer position (0-5V ave.)
- balancer motor current (0-5V ave.)

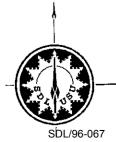
Power Converters Block Diagram

SABER Preliminary Design Review
SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

44

Power Converters Design Description

Method


- utilize dense, high efficient DC/DC converters, Modular Devices Inc.
 - 2690R (6.5 W), 2680R (30W)

Features

- isolated design
- power on soft start
- 200 kHz operation for low ripple and fast response time
- built-in EMI input filter meets MIL-STD 461C requirements CE01, CE03, CE07, CS01, and **CS02**
- built-in output spike and EMI filter
- short circuit and overvoltage protection
- capable of externally synchronizing switching frequencies

Heritage

DC/DC converters--Skipper, used by major military and aerospace firms and agencies of the US government

Power Converters Status

Preliminary Design: complete

Preliminary Schematic: complete

Parts List: active and passive

Testing:

- DC/DC converters (similar MDI units)
 - noise
 - isolation
 - turn-on transients

Interconnect Design Description

Method

- box--motherboard supporting 11, 6 × 9 inch cards
- shielded subminiature D connectors used where possble
- cabling shielded

Features

- box--connectors to outside world located on backside of motherboard
- box--signals not routed through entire motherboard; only localized
- external signals enter and leave motherboard near board of origin or destination
- multilayer motherboard incorporating ground planes

Status

Preliminary Design: complete

Preliminary Wiring Diagrams: complete

Parts List: passive

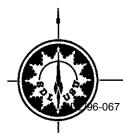
Summary

- specifications meet requirements
- preliminary design completed

analysis, modeling, simulation, testing results available

System/Board	Design	Schematic	Analysis	Simulation	Parts List	Documentation
System			Power EXCEL	System Mod. MathCAD	EXCEL	ISD
Signal Processing 1—PC Channels (1-5) 2—PV Channels (6-10) 3—Mux, A/D Converter	done done done	preliminary preliminary preliminary	Noise, DC drift, PGA linearity	PSPICE AC, DC, Transient, Temp.	Act&Pas Act&Pas Act&Pas	System Model
System Control & Data Handling 7—SC&DH 10—Housekeeping (2) 11—Housekeeping (1)	VHDL done done done	preliminary preliminary preliminary		logic	Act&Pas Act&Pas Act&Pas	commands, formats, progs.
Analog Controllers 6—Blackbody/Jones Sources Op. Heater Controllers	done	preliminary	Noise, Stability	MatLab PSPICE	Act&Pas	
Scan Mirror Controller 9—Scan Mirror Control	done	preliminary		MatLab, PSPICE	Act&Pas	scan profile, power require.
Chopper Control & Sync. 6—Chopper Control & Sync	don <u>e</u>	preliminary			Act&Pas	
Power 5—DC/DC Converters (1 & 2) 4—DC/DC Converters (3)	done done	preliminary preliminary	noise, inrush, isolation		Act&Pas Act&Pas	
Interconnect motherboard	done	preliminary			Passive	wiring diagram

Calibration Plan & GSE Overview

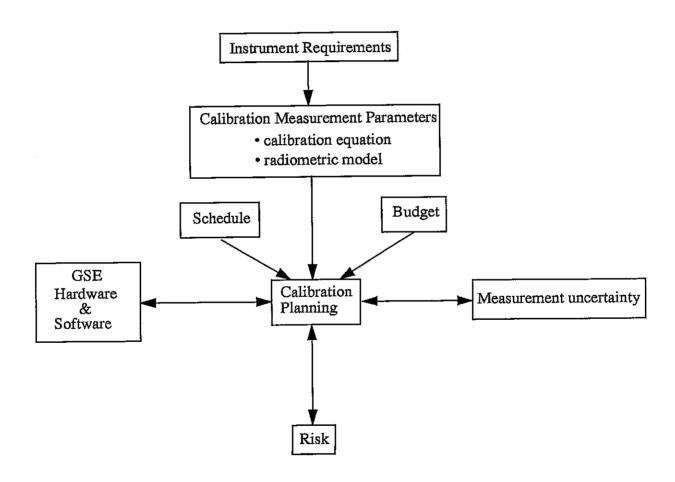

Joe Tansock Keith Paskett Andrew Shumway

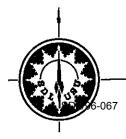
December, 10, 1996

Phone: (801) 755-4369

FAX: (801) 755-4458

E-Mail: joe.tansock@sdl.usu.edu




Outline

- Calibration Planning Philosophy
- Instrument Requirements Driving Calibration
- Instrument Requirement and Calibration Measurement Matrix
- Calibration Measurement Parameters
 - Calibration Equation
 - In-Flight Calibrator (IFC) Sources
 - Radiometric Model
- SABER operated in LN₂ Cooled test chamber
- Calibration Test Configurations
 - Full Field Collimator
 - Low and High Temperature GSE Blackbodies
 - Boresight Collimator
 - Knife Edge Test
- Calibration Uncertainty Budget

Calibration Planning Philosophy

SABER Preliminary Design Review

Instrument Requirements Driving Calibration

Parameter	Measurement Requirement				
System Noise Equivalent Radiance (NER)	Refer to SABER Instrument Requirements Document (SDL/95-00				
Radiometric accuracy ^a	5.0% absolute radiance; 3.0% goal				
Long term radiometric precision ^a	2.0% radiance precision; 1% goal				
Radiance bias drift	≤ 1 NEN between space looks				
Residual scale error	≤ 1% linearity over dynamic range				
Limb scan mirror jitter (1 G)	≤ 3 arc seconds				
Spectral Response	Refer to SABER Instrument Requirements Document (SDL/95-00				
IFOV @ 60 km earth limb tangent height	2 km FWHM				
Limb vertical scan range	Maximum and minimum depression angle Refer to SABER Instrument Requirements Document (SDL/95-006)				
Measurement altitude range	10 km to 180 km				
Focal Plane Channel Location	Refer to SABER Instrument Requirements Document (SDL/95-006)				
Boresight alignment knowledge	0.02 deg				
Signal measurement dynamic range	Refer to SABER Instrument Requirements Document (SDL/95-00				
Limb vertical sampling interval	0.4 km				

a. For SNR > 100, % is defined as a percentage of the signal. For SNR \leq 100, % is defined as a percent of the signal that produces SNR = 100

Instrument Requirement and Calibration Measurement Matrix

		Instrument Requirement												
Calibration Measurement Parameter		Radiometric Accuracy	Long-Term Radiometric Precision	Radiance Bias Drift	Residual Scale Error	Limb Scan Mirror Jitter (1 o)	Spectral Response	IFOV @ 60 km	Limb Vertical Scan Range	Measurement Altitude Range	Focal Plane Channel Location	Boresight Alignment Knowledge	Signal Measurement Dynamic Range	Limb Vertical Sampling Interval
Radiance Responsivity	1	1												
IFC Radiance		1												
Off-Axis Extended Source Throughput Correction		1												
Linearity		1			1	1								
Gain Mode Normalization		1												
IFC Measurement Long- Term Repeatability			1											
Noise Equivalent Radiance (NER)	1													
Medium-Term Repeatability Of Sensor Offset				1										
Saturation Equivalent Radiance (SER)													✓	
Relative Spectral Responsivity (RSR)		1					1							
Sensor Boresight											<u> </u>	1		
Instantaneous Field of View (IFOV)								1			1			1
Scan Mirror Transfer Function						✓			1	1				
Slit Source Response		1												
Knife Edge Response		1									<u> </u>			<u> </u>
Temporal Frequency Response										<u>] - </u>				✓

SABER Preliminary Design Review

SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

Calibration Measurement Parameters Calibration Equation

Relates sensor output (counts) to measured flux (radiance)

$$L_{m} = \frac{1}{\Re_{ch}} r_{c,ch} = \frac{1}{\Re_{ch}} [\Upsilon_{ch,i}(Scn) L_{ch,i}(G_{ch,i}(r_{ch,i}) - O_{ch,i})]$$

where

 L_m = measured radiance (W cm⁻² sr⁻¹)

 \Re_{ch} = peak radiance responsivity (counts/W cm⁻² sr⁻¹)

 $\Upsilon_{ch}()$ = off-axis extended source throughput correction (unitless)

Scn = scan mirror pointing position (counts)

 $r_{c, ch}$ = corrected scene response (counts)

 $G_{ch,i}$ = gain-mode normalization (unitless)

 $L_{ch,i}()$ = linearity correction (unitless)

 $r_{ch, i}$ = detector response (counts)

 $O_{ch.i}$ = sensor offset (counts)

ch = channel number (1 to 10)

i = gain mode (unitless)

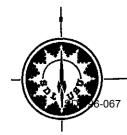
Calibration Measurement Parameters Calibration Equation Parameters

Parameter	Symbol	Permutations	Measurement Requirement	Test Configuration
Sensor Offset (Space Look)	$O_{ch,i}$	(10 det)	Radiometric Accuracy	Ali
Sensor Offset Measurement Uncertainty	σ ₀	(10 det)	Radiometric Accuracy	All
Linearity Correction Func- tion	$L_{ch,i}(\)$	(10 det)	Radiometric Accuracy Residual Scale Error	Full-Field Collimator
Linearity Correction Uncertainty	σ_L	(10 det)	Radiometric Accuracy Residual Scale Error	Full-Field Collimator
Gain Mode Normalization	G _{ch, i}	(7 det) X (3 gains) (3 det) X (2 gains)	Radiometric Accuracy	Electronics subassem- bly
Gain Mode Normalization Uncertainty	σ_G	(7 det) X (3 gains) (3 det) X (2 gains)	Radiometric Accuracy	Electronics subassem- bly
Peak Radiance Responsivity	\mathfrak{R}_{ch}	(10 det)	Radiometric Accuracy	GSE Full-Aperture Blackbody
Peak Radiance Responsivity Uncertainty	$\sigma_{\mathfrak{R}}$	(10 det)	Radiometric Accuracy	GSE Full-Aperture Blackbody
Off-Axis Extended Source Throughput Correction as a Function of Scan Mirror Position	Y _{ch, i} (scn)	(10 det)	Radiometric Accuracy	GSE Full-Aperture Blackbody
Off-Axis Extended Source Throughput Correction Uncertainty	σ_{Υ}	(10 det)	Radiometric Accuracy	GSE Full-Aperture Blackbody

SABER Preliminary Design Review

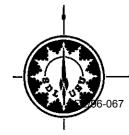
Calibration Measurement Parameters In Flight Calibrator (IFC) Sources

- Transfer ground based blackbody radiance to IFCs during ground calibration
 - Full-aperture blackbody (channels 1 to 7)
 - Calibration lamps (channels 8 to 10)
 - Two Jones source calibration lamps
- Use IFC response to update responsivity on-orbit


$$\Re_{ch} = \frac{r_{c,IFC}}{N_{IFC}}$$

```
where \Re_{ch} = updated peak radiance responsivity (counts/W cm<sup>-2</sup> sr<sup>-1</sup>)

r_{c,IFC} = corrected IFC response (counts)


N_{IFC} = IFC radiant flux (W cm<sup>-2</sup> sr<sup>-1</sup>)

ch = channel number (1 to 10)
```


Calibration Measurement Parameters In Flight Calibrator (IFC) Parameters for each IFC configuration

Parameter	Symbol	Permutations	Measurement Requirement	Test Configuration
IFC Radiance	N_{IFC}	(10 det.) X 3 source settings	Radiometric Accuracy	GSE Full-Aperture Blackbody
IFC Radiance Uncertainty	σ _N _{IFC}	(10 det.) X 3 source settings	Radiometric Accuracy	GSE Full-Aperture Blackbody
IFC Radiance Long-Term Repeatability	σ _{IFC} , repeat	(10 det)	Long Term Radiometric Precision	A11

Calibration Measurement Parameters Radiometric Model

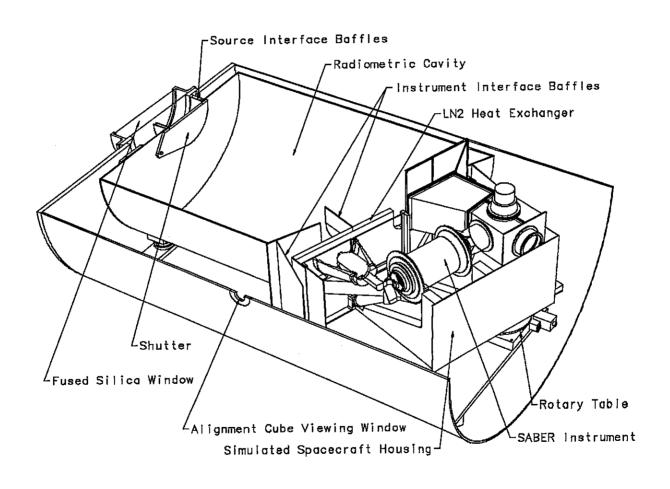
- Characterizes spatial, spectral, and temporal responsivity domains
- Calibration Parameters

Parameter	Symbol	Permutations	Measurement Requirement	Test Configuration
Noise Equivalent Radiance	NER	(10 det)	System Noise Equivalent Radiance (NER)	GSE Test Chamber and GSE Full-Aperture Blackbody
Medium-Term Repeatability of Sensor Offset. (i.e., time between space looks)	O _{O, med}	(10 det)	Radiance Bias Drift	Full-Field Collimator
Saturation Equivalent Radiance	SER	(10 det)	Signal Measurement Dynamic Range	Full-Field Collimator and GSE Full-Aperture Blackbody
Relative Spectral Responsivity	RSR(λ)	(10 det)	Spectral Response	Full-Field Collimator & External Interferometer
Relative Spectral Responsivity Uncertainty	$\sigma_{RSR}(\lambda)$	(10 det)	Spectral Response	Full-Field Collimator & External Interferometer
Sensor Boresite	$P_{bor}(in, cr)$	1	Boresight Alignment Knowledge	GSE Test Chamber and TBD collimator
Uncertainty of Sensor Boresight	σ_{bor}	1	Boresight Alignment Knowledge	GSE Test Chamber and TBD collimator
IFOV	IFOV(in, cr)	(10 det.)	IFOV @ 60 km Earthlimb Tangent Height	Full-Field Collimator
Object Space Detector Positions	P(in, cr)	(10 det)	Focal Plane Channel Location	Full-Field Collimator
Modulation Transfer Function	MTF	(10 det)	Limb Vertical Sampling Interval	Full-Field Collimator
Scan Mirror Transfer Function (encoder to angle)	F _{scan} ()	1	Limb Vertical Scan Range Measurement Altitude Range	Encoder Manufacture Acceptance Test
Scan Mirror Transfer Function Uncertainty	σ_{scan}	(10 det)	Limb Vertical Scan Range Measurement Altitude Range	Encoder Manufacture Acceptance Test

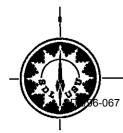
10

SABER Preliminary Design Review

Page 258 of 425


Parameter	Symbol	Permutations	Measurement Requirement	Test Configuration
Slit Source Response (off-axis response near IFOV)	S _{Slit}	(10 det)	Radiometric Accuracy	Full-Field Collimator
Knife Edge Response (off-axis response far from IFOV)	S_{Knife}	(10 det)	Radiometric Accuracy	GSE Test Chamber
Temporal Frequency Response (amplitude versus frequency)	$A_{mp}(f)$	1	Limb Vertical Sampling Interval	Theoretical LPF response
Temporal Frequency Response (phase versus frequency)	$P_{hase}(f)$	1	Limb Vertical Sampling Interval	Theoretical LPF response
Focal Plane Tempera- ture Effects				
1. NER		(10 det) X (2 temperatures)	System Noise Equivalent Radiance	GSE Test Chamber
2. Linearity Correction		(10 det) X (2 temperatures)	Radiometric Accuracy	Full-Field Collimator
3. Radiance Responsivity		(10 det) X (2 temperatures)	Radiometric Accuracy	Full-Aperture Black- body
Optical Cavity Temperature				
1. NER		(10 det) X (3 temperatures)	System Noise Equivalent Radiance	GSE Test Chamber
2. Linearity Correction		(7 det) X (3 temperatures)	Radiometric Accuracy	Full-Field Collimator
3. IFC radiance		(7 det) X (3 temperatures)	Radiometric Accuracy	Full-Aperture Black- body
Baseplate Temperature				
1. Linearity Correction		(10 det) X (3 temperatures)	Radiometric Accuracy	Full-Field Collimator
2. Radiance Responsivity		(10 det) X (3 temperatures)	Radiometric Accuracy	Full-Aperture Black- body

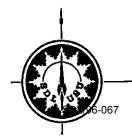
11



Page 259 of 425

SABER operated in LN₂ Cooled test chamber

12



SABER Preliminary Design Review

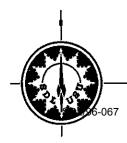
Page 260 of 425

SABER operated in LN₂ Cooled test chamber (continued)

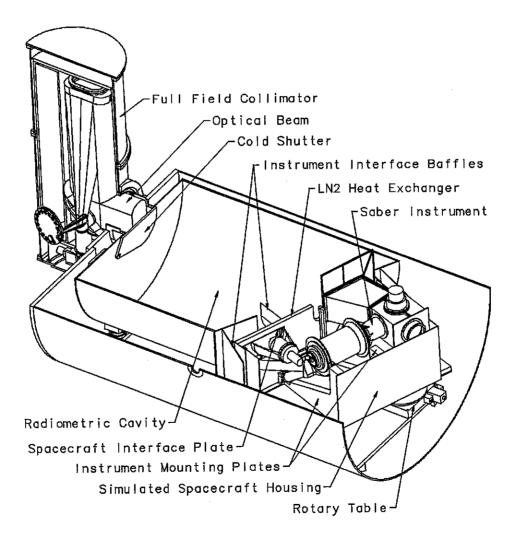
- Instrument views light resistant radiometric cavity cooled with LN₂ to approximately 90K
 - Reduces off-axis radiation (thermal and reflected) to levels that do not stress the offaxis performance of the instrument
- Instrument Thermal Control
 - Optics cavity and baseplate radiators cooled with 90K radiative heat exchanger
 - Radiators warmed to expected on-orbit temperatures with trim heaters
 - Temperature controlled shroud to simulate internal spacecraft environment (thermal balance test)
- Instrument rotates in test chamber about rotation axis of SABER scan mirror
 - view a fixed blackbody between 0 km and 400 km equivalent on-orbit scan mirror look angles
 - simplifies the design of the full field collimator
 - view a fixed knife edge at multiple sensor rotation angles
- Shutter at end of radiometric cavity provides capability to shutter calibration sources

SABER Preliminary Design Review

SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY


13 Page 261 of 425

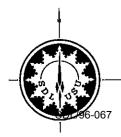
Calibration Test Configurations Full Field Collimator


Calibration Parameters

Parameter	Symbol
IFOV	IFOV(in, cr)
Object space detector positions	P(in, cr)
Modulation transfer function	MTF
Temporal Frequency Response (verify only)	$A_{mp}(f), P_{hase}(f)$
Scan mirror transfer function (verify only)	F _{scan} ()
Linearity correction function (channels 8 to 10)	$L_{ch, i}(\)$
Relative Spectral Response (RSR)	$RSR(\lambda)$
Slit source response	S _{Slit}

14

Calibration Test Configurations Full Field Collimator (continued)


SABER Preliminary Design Review

SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

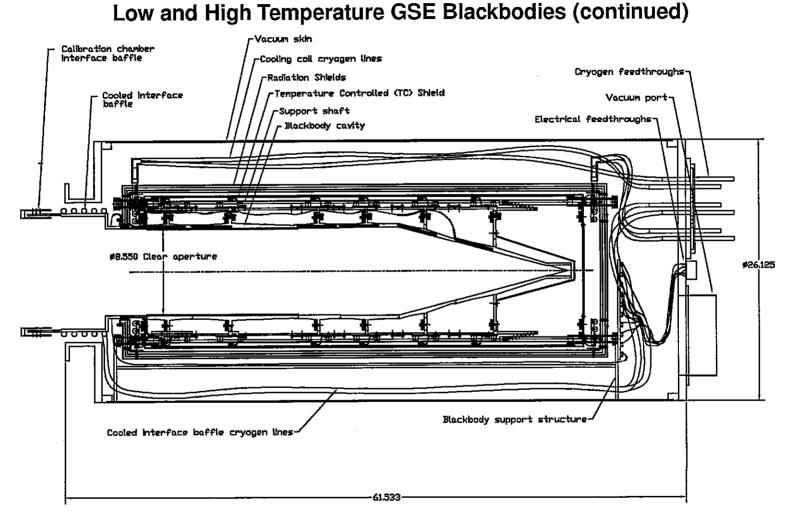
15 Page 263 of 425

Calibration Test Configurations Full Field Collimator (continued)

- Passively cooled with LN₂ holding tank for low background operation
- Will be used to present collimated source that will overfill filter and detector IFOV for linearity and relative spectral response measurements
 - Account for filter and detector non-uniformities
 - Account for Stierwalt effect
- Will be used to measure slit source response
 - Characterizes scatter for angular dimensions smaller than focal plane array
 - Slit source longer than angular length of detector
 - Design image quality sufficient to characterize FWHM with less than 3% error
- Simple optical design to reduce risk and cost
 - Single axis pointing mirror (±1.6°)
 - Off-axis parabola with focal length of 1035mm
 - · Fold mirror, aperture, and filter slide

SABER Preliminary Design Review

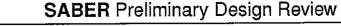
Calibration Test Configurations Low and High Temperature GSE Blackbodies


Calibration Parameters

Parameter	Symbol
IFC radiance	N_{IFC}
IFC radiance uncertainty	$\sigma_{N_{IFC}}$
Off-axis extended-source throughput correction as a function of scan mirror position	$\Upsilon_{ch,i}(scn)$
Off-axis extended-source throughput correction uncertainty	σ_Υ
Sensor offset	$O_{ch,i}$
Sensor offset uncertainty	$\sigma_{O_{ch,i}}$
Noise equivalent radiance	NER
Sensor offset medium term repeatability (time between on- orbit space look, duration of approximately 2.3 min.)	$\sigma_{O,med}$
Linearity correction function (channels 1 to 7)	$L_{ch,i}(\)$
Gain mode normalization (verify only)	$G_{ch,i}$

17 Page 265 of 425

Calibration Test Configurations

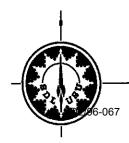


SABER Preliminary Design Review

18 Page 266 of 425

Calibration Test Configurations Low and High Temperature GSE Blackbodies (continued)

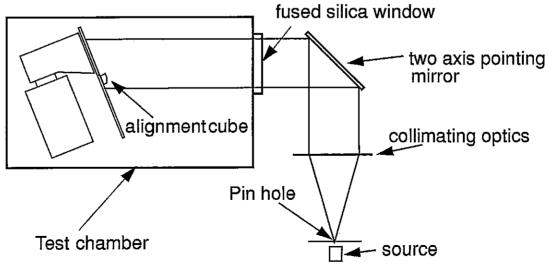
- SABER views rear conical portion of blackbody
- Blackbody size:
 - 8.5 inch clear aperture
 - 43 inch cavity length
 - L/D ~ 5
- Blackbody composed of 6 segments
 - Each segment has MICA heater, control PRT, and monitor PRTs
 - Front two segments comprise aperture extension
 - · Minimizes thermal gradients on four rear segments
 - · Brings wires up to temperature before reaching PRT
- Blackbody is surrounded with a temperature controlled shield
 - Operated near temperature of blackbody
 - Cooled with LN2
 - Heated with MICA heaters
 - Minimizes blackbody thermal gradients
 - Required for blackbody temperature control


SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

Calibration Test Configurations Low and High Temperature GSE Blackbodies (continued)

- Blackbody radiance uncertainty specified at 1.5% for SABER SNR ≥ 100
 - Temperature uncertainty
 - Emittance uncertainty
 - Reflectance uncertainty (channels 1 to 7 only)
- Single design for the low and high temperature blackbodies to reduce cost of design and manufacturing
- Low Temperature blackbody operating range of 90 K to 350 K (channels 1 to 7)
- High Temperature blackbody operating range of 300 K to 620 K (channels 8 to 10)

20


Page 268 of 425

Calibration Test Configurations Boresight Collimator

Calibration parameters

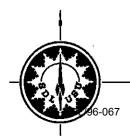
Parameter	Symbol
Sensor boresight	$P_{bor}(in, cr)$
Sensor boresight uncertainty	σ_{bor}

- Measure angular alignment between channel 10 FOV and sensor boresight defined by an optical alignment cube mounted on SABER's mounting plate
- Measurement configuration

21

96-067

SABER Preliminary Design Review

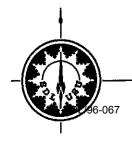

SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

Calibration Test Configurations Large Area Knife Edge

Calibration parameters

Parameter	Symbol
Knife edge test	S_{Knife}

- Verify off-axis scatter response for angular dimension larger than focal plane array
 - Sources of scatter include BRDF of mirrors and off-axis rejection performance of baffles
- Use SABER scan mirror to scan the detectors field of view toward a heated knife edge baffle (300K) located at the end of the of the radiometric cavity inside the test chamber
 - · Test chamber provides 90K background
 - Knife edge 56 inches away from instrument to give blur radius of 1.4°
 - Knife edge angular dimensions of 24° in-scan by 34° cross-scan (sufficient to overfill SABER scan mirror with off-axis flux)



SABER Preliminary Design Review

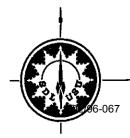
22

Calibration Uncertainty Budget

- Used as a tool to identify dominant sources of uncertainty
- Budget will evolve as sensor and calibrator performance information becomes available
- Organized into three sources of uncertainty for on-orbit calibration
 - Uncertainty of SABER response to external source
 - Uncertainty of SABER response to IFC
 - Uncertainty of IFC radiance
- Uncertainty estimates assume:
 - Science measurement with SNR=100
 - Sensor performance (requirements)
 - Estimated calibration source uncertainties

Calibration Uncertainty Budget (continued)

Radiance uncertainty for channel 1


	Total RSS Uncertainty				
Term	Description	Relative Uncertainty Error Budget (%)	Combined RSS Uncertainty (%)	(%) 3% Goal 5% Requirement	
σ ₀	Sensor offset measurement uncertainty (average 10 samples)	0.32			
$\sigma_{o,med}$	Medium-term uncertainty of sensor off- set. (i.e., time between space looks)	1.0			
σ_N	Signal noise uncertainty (SNR = 100)	1.0	1.8		
σ_L	Linearity correction uncertainty	1,0	1.0		
σ_G	Gain mode normalization uncertainty	0.1			
$\sigma_{\Upsilon_{ext}}$	Uncertainty of off-axis extended-source throughput correction (i.e. throughput correction as function of scan angle)	0.5		4.2	
	$\sigma_{r_{c,IFC}}$ - Uncertainty of SABER	R Response to IFC	•		
σ_{O}	Sensor offset measurement uncertainty (average 10 samples)	0.0			
σ_N	IFC signal noise uncertainty	0.05	1.0		
σ_L	Linearity correction uncertainty	1.0			
σ_G	Gain mode normalization uncertainty	0.1			
	σ _{IFC} - Uncertainty of IF	C Radiance			
$\sigma_{\mathfrak{R},BB}$	Radiance uncertainty of full aperture blackbody	1.5			
σ_{RSR}	Uncertainty of IFC channel radiance due to uncertainty of instrument relative spectral response	3,1	3.6		
$\sigma_{N_{IFC}}$	Uncertainty of IFC radiance (calibration transfer to IFC)	1.0			
σ _{IFC} , repeat	Uncertainty due to IFC radiance long-term repeatability	0.5			

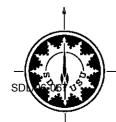
Page 272 of 425

Calibration Uncertainty Budget (continued)

- Dominant sources of uncertainty
 - Uncertainty of IFC channel radiance due to uncertainty of instrument relative spectral response (3.1%)
 - Radiance uncertainty of GSE blackbody (1.5%)

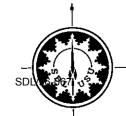
25 Page 273 of 425

SABER Electrical GSE & GSE Software Overview

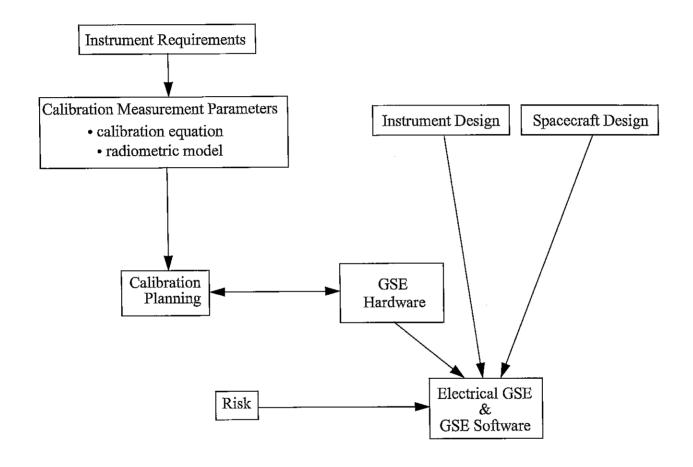

Keith Paskett

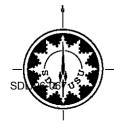
December, 10, 1996

Phone: (801) 755-4195


FAX: (801) 755-4458

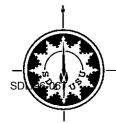
E-Mail: keith.paskett@sdl.usu.edu



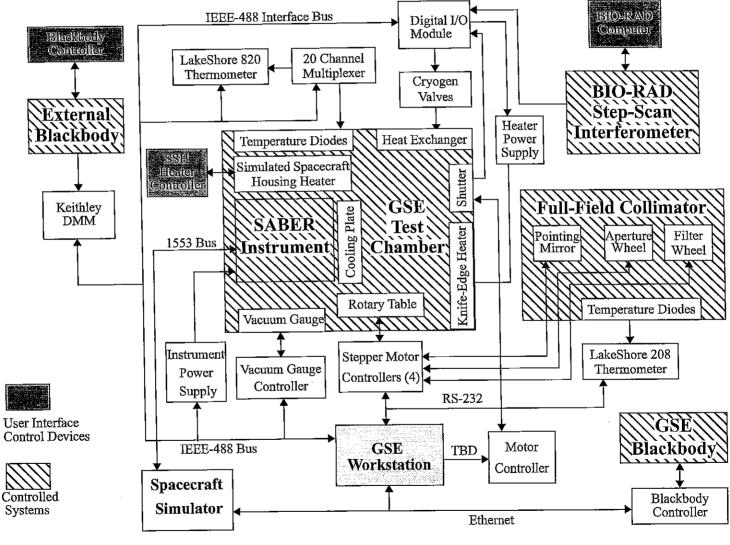

Outline

- Electrical & Software Requirements Flow Down
- Electrical GSE
 - •GSE Workstation
 - •GSE Electrical Interfaces
- GSE Software

Electrical & Software Requirements Flow Down



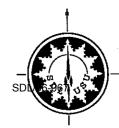
Electrical GSE


- GSE Workstation and all wiring and devices between it and:
 - SABER Instrument
 - •GSE Test Chamber
 - •Full Field Collimator
 - •Full Aperture Blackbody
 - Step-Scan Interferometer
 - Other Test and Calibration Sources

(Industry standard busses and devices used to reduce delivery risk)

Other electrical devices used to support ground operation of the instrument

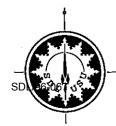
SABER Electrical GSE Interface Block Diagram



SABER Preliminary Design Review

GSE Workstation

- Sun Sparcstation with two monitors running the Solaris 2.5 (Unix) operating system
 - •Platform chosen to take advantage of SDL's existing control software, programming expertise, and data analysis environment.
 - •Dual monitor configuration allows a test conductor to more easily monitor the instrument and GSE hardware status during instrument calibration.
- 4 Gbytes of on-line storage for instrument data and GSE data logs
- 4mm Tape drive for data archival
- Printer
- C, C++, and Fortran Compilers
- PostgreSQL relational database
- RS/1, PV~Wave, and BBN Cornerstone data analysis software

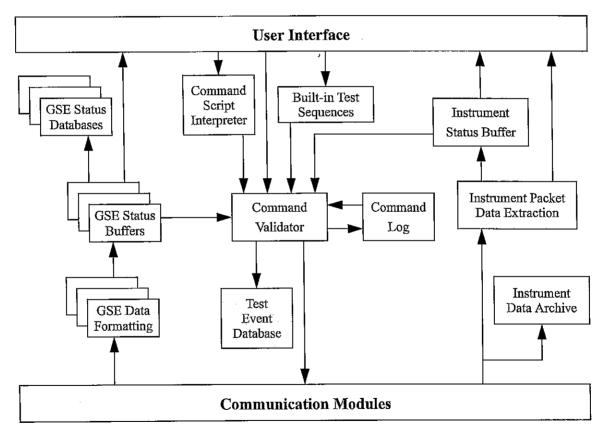

GSE Electrical Interfaces

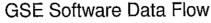
Instrument

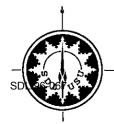
- Power The GSE workstation controls an instrument power supply over an IEEE-488 bus
- •Commands Instrument commands are sent over an ethernet connection to a spacecraft simulator (supplied by APL). The spacecraft simulator communicates with the SABER instrument over a 1553 bus.

GSE Test Chamber

- •Knife-edge heater The knife-edge heater is turned on and off by setting bits in a digital I/O module over an IEEE-488 bus.
- •Shutter Commands are sent to the shutter's motor controller over a TBD link
- •LN2 heat exchangers The flow of LN2 is controlled by vales which are turned on and off by a digital I/O module over an IEEE-488 bus
- •Rotary Table The position of the rotary table is set by a stepper motor controller which communicates with the GSE workstation over an RS-232 serial connection.
- •Temperature Diodes A 20 channel multiplexer cycles through the test chamber diodes and sends the output to a diode reader. Both the diode reader and the multiplexer communicate with the GSE workstation over an IEEE-488 bus.
- •SSH Heater The simulated spacecraft housing heater has an independent controller which is not interfaced with the GSE workstation. The SSH temperature is monitored by the GSE workstation.


GSE Electrical Interfaces (Cont.)


- Full Field Collimator
 - •Pointing Mirror The position of the pointing mirror is determined by a positioning table which is operated by a stepper motor controller over an RS-232 serial link.
 - •Aperture/Filter Wheel are positioned by TBD stepper motors over a TBD link.
 - •Temperature Diodes An 8 channel diode scanner reads the diode temperatures and communicates with the GSE workstation over an RS-232 connection.
- Full Aperture Blackbody
 - •Controller the full aperture blackbody controller communicates with the GSE workstation over an ethernet link.
- Step-Scan Interferometer
 - •Step Pulse At each step of a scan, the BIO-RAD step-scan interferometer sends a sync pulse to trigger data collection. The GSE workstation receives these pulses through a digital I/O module on the IEEE-488 bus.
- External Blackbody
 - •Temperature Monitor Temperature of the external blackbodies is monitored by reading a thermocouple with a Keithly digital Multimeter. The thermocouple reading is sent to the GSE workstation over an IEEE-488 interface.



GSE Software

- Allows a user to control and monitor the SABER instrument and GSE hardware
- Records Instrument data and GSE status information

GSE Software (Cont)

- Graphical User Interface
 - •Main window contains all instrument monitor and control elements.
 - •GSE control windows will be displayed as required for a given test.
 - •For each command sent, the GUI shows whether that command has been executed by the appropriate device.
 - •Only the most pertinent GSE status information will be displayed. All available information will be recorded and can be accessed immediately from a database.
- Command and Data Handling
 - All Commands are validated in the current software context before being executed
 - •All Instrument data is recorded and archived
 - •Each instrument power-on command starts a new instrument data file
 - •Instrument status is extracted from the telemetry data and displayed on the GUI
 - •Science data can be extracted and displayed in real time in a pop up window
 - •All GSE status data is logged to database tables and is immediately available by other workstations on the network
- Test Event Database
 - •Test events will be logged with an entry in a test event database which will include
 - A unique test identifier
 - Instrument data location (file name and position) of first sample
 - Number of samples for this test
 - Sensor and GSE status information



GSE Software (Cont)

•Representative statistics (mean and standard deviation) of science data for each test will be computed and stored in the test event database. This will allow a data analyst to search for test events with specific data characteristics.

Automation

- •Built in test sequences allow predetermined and repetitive command sequences to be performed more quickly and reliably.
- •The GSE software will also read and execute commands from command scripts
- Execution of built-in sequences and scripts can be paused, stopped, restarted, or aborted.

SABER INSTRUMENT FABRICATION, INTEGRATION AND TEST

Steven Brown

December 10, 1996

Phone: (801) 755-4466

Fax: (801) 755-4299

E-Mail: Steven.Brown@sdl.usu.edu

FABRICATION, INTEGRATION AND TEST Overview

Fabrication

- Mechanical / Structural
 - Design Team
 - Design Facilities
 - Machine Shop
- Electrical
 - Design Team
 - Design Facilities
 - Fabrication

FABRICATION, INTEGRATION AND TEST Overview

Integration and Test

- Engineering and Development Tests
 - Description of Engineering and Development Tests
 - Sample of some Engineering and Development Tests
- Proto-Flight Tests
 - Test Plans and Procedures
 - Test Reports
 - Proto-Flight Tests
- Test Matrix
- Integration and Test Flow
- Personnel Organization Chart
- Facilities
 - Clean Rooms
 - Optical Bench
 - Shaker Equipment
 - Thermal Vacuum Equipment
 - Test and Calibration Support Equipment

FABRICATION Mechanical / Structural

Mechanical and Structural Design Team for SABER

- Core Team assigned to SABER project for duration of project
 - Engineers and Designers will follow project from start to finish
 - Engineers work directly with designers, technicians, machinists, etc.
 - Designers are considered fully part of the team
- Optical Design
 - Roy Esplin & John Stauder
- Mechanical Design & Analysis
 - Steve Folkman & Mehrdad Roosta Engineering and Analysis
 - Dave McLain & Pete Brunson Design / Drawings
- Thermal Design & Analysis
 - Clair Batty & Scott Jensen
- Experienced Machinists working in Machine Shop

FABRICATION Mechanical / Structural

Mechanical Design and Fabrication Facilities at Space Dynamics Laboratory / Utah State University

- Design Facilities
 - Software
 - OSLO: Optical Ray Tracing, analysis, and optimization
 - APART: Straylight Analysis
 - NEVADA, SINDA, ORBITAL WORKBENCH: Thermal Analysis and Design
 - NASTRAN: Structural Analysis
 - ACAD, IDEAS: Mechanical Design, Drawings
- Machine Shop
 - Mitutoyo Height Gage and Test Indicator
 - Mitutoyo Height Gage Probe
 - BH710 Mitutoyo CMM Inspection Machine
 - MH600T MAHO Milling machine, computer controlled
 - MH1000T MAHO Milling machine, computer controlled
 - TREE Milling Machine with digital readout

FABRICATION Mechanical / Structural

Mechanical Design and Fabrication Facilities at Space Dynamics Laboratory / Utah State University

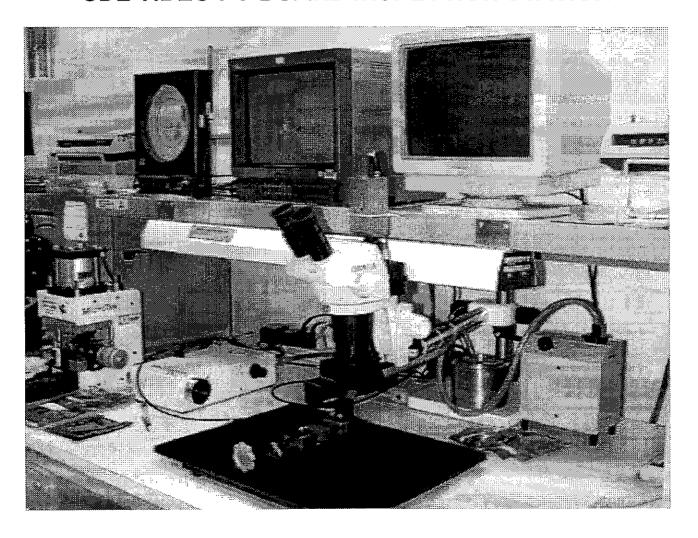
- Machine Shop (continued)
 - Four Small Milling Machines with digital readouts
 - Metal Bandsaw
 - Cutoff Bandsaw
 - 48SL Sand Blaster
 - Mechanical Shear
 - Two 2 ton hoists
 - Metal Lathe
 - Engine Lathe
 - Heliarc Welder
 - Welder
 - 10" Monarch Lathe
 - Monarch Lathe
 - Large Grinder
- Some large items will be machined out of house

SDL MACHINE SHOP

SABER Preliminary Design Review
SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY
7

FABRICATION Electrical

Electrical Design Team for SABER


- Mark Jensen & Jay Ballard
- Technicians assigned for duration of project

Electrical Design and Fabrication facilities at Space Dynamics Laboratory / Utah State University

- Design Facilities
 - Software
 - · Pspice: Circuit simulation
 - MatLab: Simulation, Modeling
 - MathCAD: Modeling
 - Pcad: schematic capture, PC board layout
 - · Orcad: schematic capture
 - Viewlogic and Actel Design Tool: VHDL design and simulation
- Fabrication
 - Certified PC board fabrication out of house
 - NASA Certified personnel and lab facilities for PC board Assembly
 - Microscopic video inspection of circuit board assemblies
 - Automated facilities for SMT fabrication and rework

SDL VIDEO PC BOARD INSPECTION STATION

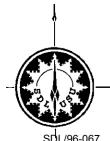
SABER Preliminary Design Review
SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

INTEGRATION AND TEST Engineering and Development Tests

Engineering and Development Tests

- Conducted during design phase and early in integration phase
- Design and Manufacturing Verification
- No formal test plan required
 - Logbooks or travelers will follow flight assemblies
 - Engineering notebooks maintained on tests
- Summary Reports
 - Summary of significant results
 - Include test data
 - Conclusions of test

Sample of Engineering and Development Tests


- Characterization of signal conditioning filter response to step function
- Push / Pull stress tests on support struts and mounting fixtures
- Scan mirror / controller tests
- Focal plane support system development tests
- Optics Mount development tests
- Jitter Tests
- Tests to verify GSE and Calibration Equipment function, accuracy, etc.
- NIST calibration verification tests

INTEGRATION AND TEST Proto-Flight Tests

Proto-Flight Tests

- Performed at Integrated Instrument Level
- Includes Functional, performance, environmental, and calibration testing
- Formal Test Plans and Procedures
- Test Levels
 - Exceed expected lifetime environments
 - Low enough to maintain flight integrity of flight equipment
- Tests conducted under direction of system engineer

INTEGRATION AND TEST Proto-Flight Tests

Test Plans and Procedures

- Development by engineering team under direction of system engineer
- Test Procedure due to LaRC 10 days prior to test
- Test Procedure Requirements
 - Test Item description, Level of Assembly and Configuration
 - Test Objectives and Outline
 - Test Environments, Duration, Cycles, and Methods
 - Performance Requirements
 - Test Facility, Equipment and Instrument Needs
 - Test Equipment and Instrument Certification Policies
 - Test Personnel Responsibilities
 - Test Quality and Safety Activities
 - Test Photographic Coverage Required

INTEGRATION AND TEST Proto-Flight Tests

Test Reports

- Preliminary Report of initial results
 - Due 10 days following the test
 - Telephone, Fax or E-mail
- Final Report
 - Due six months after test completion
 - Shall include
 - Filled-in test procedure or test documentation as an attachment
 - · List of changes in procedures, hardware or software made from the original
 - Reports of all nonconformance and failures occurring during the test
 - · Summary of all significant test results, test data and conclusions
 - · Photographs if available
 - · Location of raw test data
 - Certification from Quality Assurance and Project Manager

INTEGRATION AND TEST **Proto-Flight Tests**

Proto-Flight Tests

- Structural Integrity: (Sine Burst)
 - Sine Burst Vibration Test Levels

• Thrust axis 15.5 g @ 24 Hz

Lateral axis
 8.5 g @ 24 Hz

- Workmanship: (Random Vibration)
 - Random Vibration Test Spectra
 - Three Axes
 - Test Duration 1.0 min/axis Overall Level 14.1 Grms

_	Frequency (Hz.)	Acceleration (G^2/Hz.)
_	20	0.026
_	20-50	+6.0 dB/Oct.
_	50-800	0.160
	800-2000	-6.0 dB/Oct.
_	2000	0.026

INTEGRATION AND TEST **Proto-Flight Tests**

Proto-Flight Tests (cont.)

- Sine Survey
 - **Test Conditions**

Frequency Range

10 - 500 Hz.

Level

0.25 G

Duration

10 Oct/min

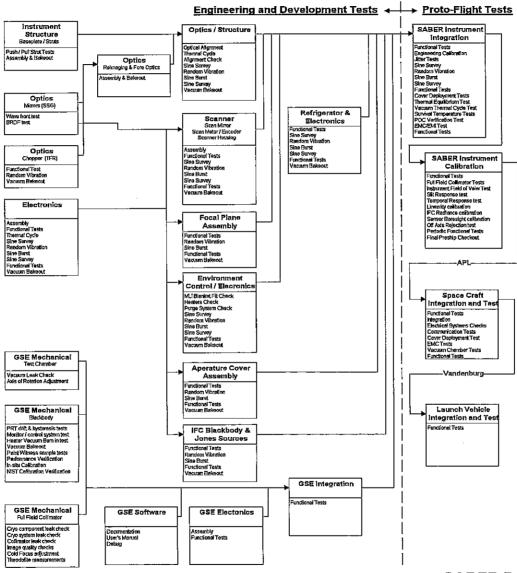
- Test in 3 orthogonal axes
- **Cover Deployment**
- EMC/EMI: subcontract to NTS
- Alignment

INTEGRATION AND TEST Proto-Flight Tests

Proto-Flight Tests (cont.)

- Thermal Vacuum Balance
- Thermal Vacuum Cycle and Survival Temperature Test
 - Test Conditions

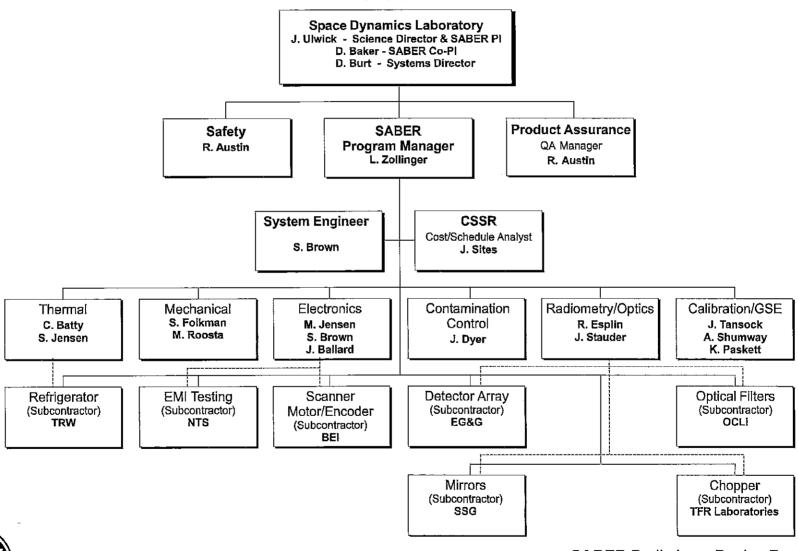
•	<u>Test Parameter</u>	<u>Parameter Value</u>
•	Pressure	<10-4 torr
•	Survival Temperature Limit	-34°X to +60°X
•	Operational Temperature Limit	-29°X to +55°X
•	Stability	< 3 °X/hr
•	Soak time	4-hour minimum
•	Cycles	1 survival and a minimum of 6 operational


INSTRUMENT TEST MATRIX

Hardware Description				Test Program Description																
Legend X = Test Performed A = Analysis S = Subcontractor Performed Test		File Test	EWICEM!		Ren Burst	Ar Andrews	Serine Cover	Maric Load all Deploy	MA	Coments of the	Alice of Gravit	"Sument	/ / / / / / / / / / / / / / / / / / /	The Baken	The Machine	Hermal Vacuum Balance		Colli Cunt	Demention	a elopment
Protoflight Testing																				
Fully Integrated Instrument	Х	Х		Х	Х	Χ		Χ	Α	Α	Х			Х	Х			Х		
Engineering Testing																		<u> </u>		
Support Structure				X			X					Ĺ. <u>.</u>		ļ						
Optics Assembly	x							X	A	Α										
Telescope							ļ	Х	Α	Α	Х		Χ						X	
Baffle/Aperture Cover Assy	L.					Х		X	Α	Α		<u> </u>	X					<u> </u>	X	
Scan Mirror Assembly	Х				s			Х	Α	Α					S			S	Х	
Chopper	8			Х	Х			S	Α	Α					S			<u></u>	X.	
IFC Blackbody			_	<u> </u>				Х					X.					<u></u>		
Jones Sources							<u> </u>	Х	·				X							
Cryogenic Assembly		ļ	<u> </u>					Х	Α	Α		ļ			_		X			
FIST Assembly	<u> </u>						_	X	Α	Α			X						X	
Detector Subassembly	s			S	S		<u> </u>	S		_	S		ន				s	<u> </u>	ļ	
Filter Subassembly				S	S			S		_			S				S			
Thermal Link	-			_			<u> </u>	Х		_		<u> </u>	X						Х	
Refrigerator	s			s	s			X	Α	Α			Х		х					
Optics Radiator Assembly								Х	Α	Α			Х							
Base Plate & Support Structure								Х	Α	Α			Х						X	
Instrument Electronics Assy	X			X	X			Х	Α	Α	ļ		X		Х					
RFE Assembly	X			х	Х			Х	Α	Α			Χ		Х					
Cable Assemblies	Cable Assemblies							X					X							

SABER Preliminary Design Review
SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

INTEGRATION AND TEST FLOW



SABER Preliminary Design Review

SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

18

INTEGRATION AND TEST Personnel

SABER Preliminary Design Review

SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

19

Clean Room Facilities

- RP1
 - High Bay Clean Tent: Class 100
 - Optical Clean Room: Class 100
- RP2
 - Clean tents: Two Class 100 tents
 - Precision Cleaning Lab: Class 1000
 - Clean tent in Precision Lab: Class 100
- RP3
 - Clean Room: Class 10, 50% humidity
 - Pass Through Floor Clean Room: Class 10, 50% humidity
- RP4
 - Clean Tents: Two Class 100 tents, 50% humidity

Optical Bench Facilities

- Ealing 4'x8' Honeycomb Table with Class 100 Clean Tent
- Ealing 4'x20' Honeycomb Table with Class 100 Clean Tent and overhead crane
- Clean Bench
- Dewar with window for cold optical testing

Shaker Equipment

- Ling Dynamics System shaker head and amplifier (pulse type amp)
 - Capable of 7000 lb force
 - Sine, random, sine on random, sine dwell, random on random, shock
- Gen Rad computer controller / monitor
- Slip table
- MB Shaker head with Ling Dynamics System amplifier (class AB amp)
 - Capable of 3500 lb force
 - Sine and random
- Spectral Dynamics Computer controller / monitor

Thermal Vacuum Equipment

- Two Large Thermo-Vac Chambers for vacuum bakeout and vacuum thermal cycle tests.
- One Small Thermo-Vac Chamber for use on smaller parts or subassemblies

Space Dynamics Laboratory Supplied Support Equipment for Testing and Calibration

- Vacuum Pumps
 - Balsers 4 inch pumping system
 - Leybold 8 inch pumping system
- Cryogen Dewars and fill lines
- Lakeshore 208 temperature monitors
- Rank Taylor Hobson Alignment Telescope
- T4 Theodolites
- Four IR Industries blackbodies (model 101B or 101C)
- KAYE ice point reference cell
- Bio-rad step scan interferometer (model 60A)
- · Liquid nitrogen dewar for nitrogen purge gas with high pressure gas fitting
- ATA (nitrogen purged antechamber)

Space Dynamics Laboratory Supplied Support Equipment for Testing and Calibration (continued)

- Lakeshore temperature data acquisition system
 - Cryogenic temperature monitor (model 820)
 - Sensor Scanner (model 8085)
 - Cryogenic temperature monitor (model 208)
- TOPAZ power conditioner
- 16 inch parabolic collimator with 100 inch focal length
- 18 inch fused silica window
- 22 inch reference flat mirror with 2 axis gimbal
- 4 inch gold Labshore integrating sphere
- MIC-1 LUPI (long unequal path interferometer)
 - FASTVAI Fast Code interferogram reduction software
- SPAS Chamber
 - will be modified for NIST TXR GSE Blackbody calibration
- · Jarret Triple point reference cell

FABRICATION, INTEGRATION AND TEST Summary

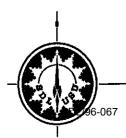
Fabrication

Personnel and facilities are available for mechanical and electrical design and fabrication

Integration and Test

- Assurance that the SABER Instrument meets science and environmental specifications
 - Test catagories have been defined
 - Engineering and Development tests
 - Proto-Flight tests
 - Necessary tests have been planned
 - · Test levels are established
 - Equipment is available or being procured
 - Complete record of tests performed for all flight assemblies
 - Guidelines for developing test procedures have been made
 - Guidelines for producing test reports have been established

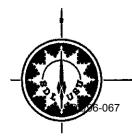
Calibration Test Schedule

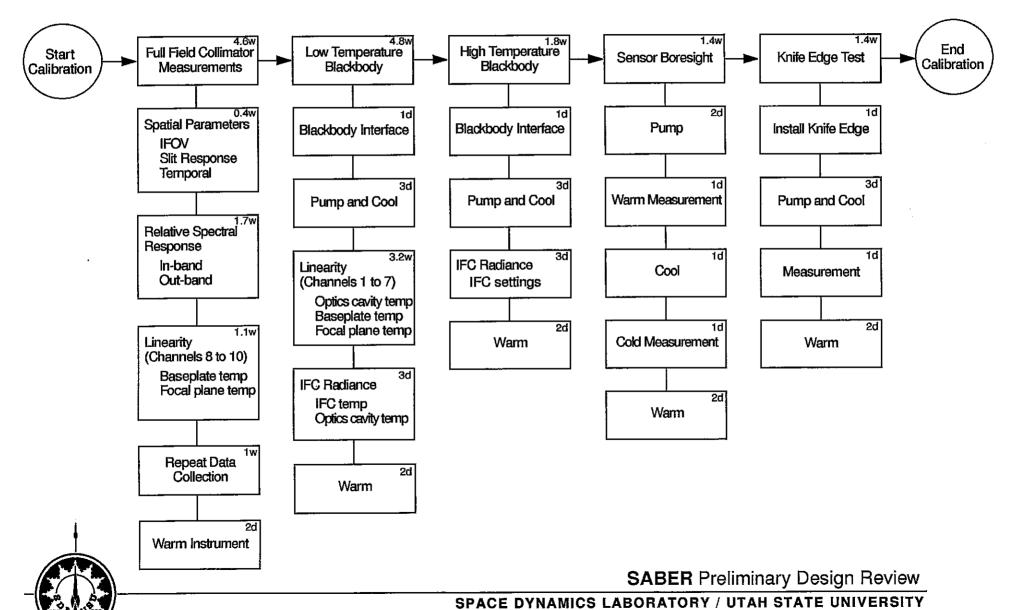

Joe Tansock

December, 10, 1996

Phone: (801) 755-4369

FAX: (801) 755-4458


E-Mail: joe.tansock@sdl.usu.edu


SABER Calibration Test Schedule

- Current schedule
 - 18 weeks for engineering pre-calibration testing
 - · Instrument check-out
 - Mini engineering calibration (~10 weeks)
 - 14 weeks for calibration testing
 - Formal calibration
- Calibration schedule assumes full functional test with full field collimator before start of calibration testing

2

SABER Calibration Test Schedule

SABER INSTRUMENT CONTAMINATION CONTROL

James S. Dyer

December 10, 1996

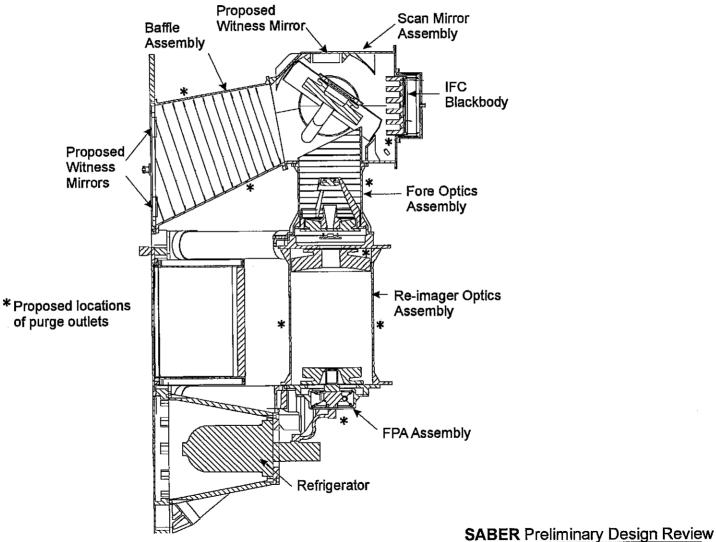
Phone: (801) 755-4386

Fax: (801 755-4444

E-Mail: jim.dyer@sdl.usu.edu

SABER CONTAMINATION CONTROL Instrument Design and Fabrication

Mirror Cleanliness Requirements


- Stray light analyses indicates Level 200 (on-orbit) required for scan mirror and primary and secondary mirrors
 - Requirement based on goal of NRR ≤ 1% total signal
 - Level 100 mirrors can be maintained during sensor development at SDL/USU
- BRDF will be tested prior to installation
- Propose to use witness mirrors to monitor mirror degradation
 - Witness mirror behind scan mirror will be "worst case" environment
 - Witness mirrors mounted on cover will monitor contamination of optical compartment
- Film deposition shall be less than 0.5 μ to avoid loss of IR reflectance or increase in BRDF
 - Water deposition not expected at 200 K
 - Organic films will be controlled by materials selection and vacuum bakeout

Optical Compartment Cleanliness Requirements

- Strict process control and vacuum bakeout of painted parts
- Level 300 or better for painted surfaces
- Level 200 or better for metallic surfaces

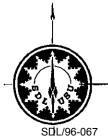
SABER CONTAMINATION CONTROL Witness Mirrors & Purge Outlet Locations

SABER CONTAMINATION CONTROL MLI Outgassing

CONCERN:

Detector Assembly is an Isolated Cold Finger Surrounded by Outgassing Non-metallic Materials

- Water is the predominant condensible outgassing species
- MLI is a significant source of water vapor that will readily condense on surfaces < 140 K
 - H₂O condensation on thermal link and focal plane ass'y increases heat load
 - H₂O condensation on cold surfaces changes emissivity (and increases heat load)
 - Codensatiion on window can cause IR tranmission loss
- Glassford, et. al. provide outgassing as f(t, T) for double-aluminized Mylar and Dacron net (Ref. JVST A. Vol.2, p.1370, (1984)
 - Pre-baking MLI at 335-340 K for 24 hr. can reduce long term outgassing rate (measured 1 week later) by > 1 order of magnitude.
- Operational Remedy: Effective bakeout of sensor should precede cold tests
 - Propose sensor bakeouts at 315-320 K for approx. 72 hrs
 - Bakeout efficiency can be quantitatively tested using QCMs in ASTM 1559 chamber
 - Real-time water deposition on window can be monitored using detector channels 8 & 9
 - Dry N₂ purge will be required to prevent reabsorption of water vapor when vented to atmospheric pressure


SABER Preliminary Design Review

SPACE DYNAMICS LABORATORY / UTAH STATE UNIVERSITY

SABER CONTAMINATION CONTROL **Instrument Requirements**

ELEMENT	CONTAMINATION GOALS	CONTAMINATION HAZARDS	DESIGN REMEDIES	OPERATIONAL REMEDIES			
Mirrors	Level 100 pre-launch Level 200 on-orbit < 0.5 μm of IR-absorbing films	particulates and NVR cryo deposits	 isolation from contamination sources filtered purge of compartments barriers to particulate migration 	wet-cleaning techniques prior to installation BRDF prior to installation sensor evacuation, bakeout, backfill, and purging procedures witness mirrors environmental control			
Optical compartments	Level 300 for painted surfaces Level 200 for metallic surfaces low outgassing	redistribution of particulates to mirrors organic films from non- metallics	established painting, curing, and cleaning procedures filtered purge of compartments barriers to particulate migration	 pre-assembly cleaning high temperature vacuum bakeout of painted parts sensor evacuation, bakeout, backfill, and purging procedures witness mirrors environmental control 			
Focal plane assembly	Level 100 internal Level 200 Kevlar support <0.1 % obscuration of detectors <0.5 μm of IR-absorbing films	cryofrosts - especially H ₂ O condensation on window particulates thin films	• neon-filled sealed detector housing	microscopic cleaning and inspection during focal plane buildup TBD focal plane bakeouts sensor evacuation, bakeout, backfill, and purging procedures re-evaporate ice film from window by shutting off refrigerator, if necessary			

SABER CONTAMINATION CONTROL

Instrument Requirements (cont.)

ELEMENT	CONTAMINATION GOALS	CONTAMINATION HAZARDS	DESIGN REMEDIES	OPERATIONAL REMEDIES			
Refrigerator assembly • Level 300 • minimum water outgassing		particulate migration onto window water deposition on window excess heat load by emissivity changes due to water condensation	restricted path to detector window optimized blanketing around cold link	sensor evacuation, bakeout, backfill, and purging procedures re-evaporate ice film by shutting off refrigerator, if necessary			
Multilayer insulation	visibly clean minimum water outgassing	• primary source of water outgassing	• internal MLI purge manifold • hydrophobic outer "bag"	 sensor evacuation, bakeout, backfill, and purging procedures 			
Aperture cover	Level 200 internal Level 300 external pre-launch	• particulates	easy cleanability low contamination wax actuator	pre-assembly cleaning protective cover			
Radiators	• Level 300 pre-launch • Level 750 on-orbit	degradation of thermal properties by contamination	thermal design can tolerate anticipated degradation	• pre-launch protective cover			
Electronics and cables	• visibly clean • low outgassing	outgassing source nearest sensor	• restricted path to detector window	thermal-vacuum bakeout to reduce outgassing			

SABER CONTAMINATION CONTROL Requirements to Support Spacecraft Integration and Testing

Dry N₂ Purge Supply Required at All Facilities and Operations!

- Prior to Spacecraft Integration:
 - Class 10,000 environment requested to support preparation for functional test
 - Better than Class 10,000 requested to support door deployment test and post-shipping inspection of mirror cleanliness
- During Spacecraft Integration:
 - Class 10,000 environment during sensor installation
 - Spacecraft air conditioning should be Class 10,000
- During Spacecraft Testing (After Instrument Integration)
 - SABER optiics isolated from external contamination by continuous N₂ purge and internal HEPA air conditioning
 - Sensitive external surfaces (aperture cover and radiators) can be protected by bagging or removable covers
 - Environmental requirements can be relaxed to Class 100,000
 - Should maintain external spacecraft cleanliness ≤ Level 750

ALGORITHM DEVELOPMENT AND DATA PRODUCTS FOR THE SABER EXPERIMENT

MARTY MLYNCZAK NASA LANGLEY RESEARCH CENTER

JIM RUSSELL HAMPTON UNIVERSITY

SABER PRELIMINARY DESIGN REVIEW

DECEMBER 10-12, 1996 LOGAN, UTAH

OUTLINE

- Brief review of SABER measurement requirements
- Discuss SABER data products
- Algorithm development:

Radiative transfer calculation in the non-LTE environment

Geophysical information retrieval from SABER measurements

- Define necessary work (modeling, lab measurements) needed for SABER data analysis
- Summary

SABER MEASUREMENT REQUIREMENTS

The overarching TIMED goals are to quantify the thermal structure in the 60-180 km region and to understand the energy balance of this region

These two goals are tightly coupled because it is the energetics which determines the thermal structure

The TIMED region is also unique in that chemistry and the transport of chemical energy plays a crucial role in the energy/thermal balance

The SABER measurements are chosen to elucidate the thermal structure, key chemical components, and the energy balance by direct measurement of processes by which energy gain and loss can be determined

SABER MEASUREMENT REQUIREMENTS

Key energy gain and loss mechanisms:

Radiative/Chemical

- Solar heating (Ultraviolet, visible, near-ir)
- Infrared cooling (CO₂, NO, O₃, H₂O)
- Exothermic Chemical Reactions
- Airglow Energy Loss $(O_2(^1\Delta), O_2(^1\Sigma), CO_2(4.3\mu m))$
- Chemiluminescent emission (OH(v))
- Particle precipitation (for z > 100 km)

Dynamical processes

- Turbulence
- Gravity Wave Breaking, etc.

The temperature and terms associated with Radiative/Chemical sources and sinks of energy are measurable

A goal of SABER is to quantify the thermal structure and the major radiative and chemical sources and sinks of energy, thus allowing the next effect of dynamics on the thermal structure to be inferred

SABER MEASUREMENTS

SABER Measurements	Geophysical Information
CO ₂ (15 μm)	Temperature, Radiative Cooling
O ₃ (9.6 μm)	Ozone, Solar Heating, Radiative Cooling
H_2O (6.7 μ m)	Water vapor, Radiative Cooling, Chemistry
NO (5.3 μm)	Radiative Cooling
CO ₂ (4.3 μm)	Dynamical tracer
OH(1.6 μm)	Chemical heating, chemistry, airglow loss
OH(2.0 μm)	Chemical heating, chemistry, airglow loss
O ₂ (1.27 μm)	Ozone, solar heating, airglow loss

These measurements enable a virtually complete description of solar heating, radiative cooling, chemical heating, and airglow losses in addition to the thermal structure

The dynamical tracers (CO₂, H₂O) provide additional information on dynamics

SABER DATA PRODUCTS

There are numerous data products that will be derived from the SABER measurements.

Two classes of data products, Routine and Analysis

Routine: Regularly produced

Analysis: Requires additional processing/work/modeling

SABER "Routine" Data Products

- KINETIC TEMPERATURE (T_K)
- OZONE (O₃)
- WATER VĂPOR (H₂O)
- EXCITED STATE ABÚNDANCES/Volume Emission Rates
 - NO(υ)
 - OH(υ = 7, 8, 9)
 - OH(v = 3, 4, 5)
 - $O_2(^1\Delta)$

SABER DATA PRODUCTS

"Analysis" Products

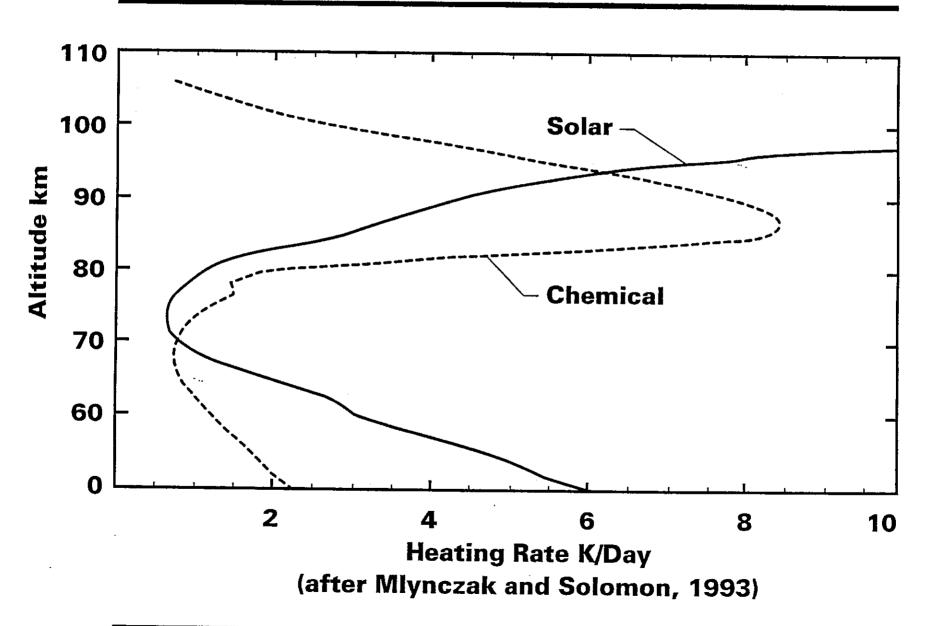
Constituent Abundances:

CO₂ (100-160 km) O (80-100 km) H (80-100 km)

- Cooling Rates
 CO₂(15 μm)
 NO (5.3 μm)
 O₃ (9.6 μm)
 H₂O (6.7 μm and far-infrared)
- Solar Heating Rates
 O₃ (Hartley, Huggins, Chappuis, and other UV)
 O₂ (Schumann-Runge, Ly-α, Herzberg, Atmospheric Bands)
 CO₂ (near-ir)

SABER DATA PRODUCTS

"Analysis" Products (continued)


Chemical Heating Rates

$$H + O_3 -> OH + O_2$$

 $O + O + M -> O_2 + M$
 $O + O_2 + M -> O_3 + M$
 $O + OH -> H + O_2$
 $H + O_2 + M -> HO_2 + M$
 $O + O_3 -> O2 + O_2$
 $OH + O_2 -> HO_2 + O$

• Airglow/Chemiluminescent Emission/Heating Efficiencies $O_2(^1\Delta)$ (Hartley band solar heating)

OH(
$$\upsilon = 7,8,9$$
)
OH($\upsilon = 3, 4, 5$)

Daily average heating

Example of a SABER Analysis Product

Thermospheric cooling by NO(υ) emission:

NO emission at 5.3 μm is thought to be the single largest radiative cooling mechanism in the thermosphere (125-200 km)

SABER measurements of NO limb emission, when inverted, give the total of energy loss per unit volume per unit time from NO

NO must be produced in an excited state in order to radiate

Many processes can result in NO excitation

- Excitation by collisions with atomic oxygen
- Excitation by absorption of upwelling radiation
- Excitation by chemical reaction

The NO molecule, once excited, will radiate independently of excitation process, resulting in a removal of energy from the atmosphere

However, only the energy associated with collisional excitation results in a true cooling (i.e., a change in the local kinetic temperature)

Example of a SABER Analysis Product

In order to derive the cooling rate from the SABER measurements of energy loss, additional modeling must be employed to enable estimation of the non-collisional excitation processes

In addition, since the cooling rate is proportional to the energy loss rate divided by the density, a value of the density must be provided

SABER won't measure density in the thermosphere, so this must be provided by a model calculation

Furthermore, the cooling rate (K/day) depends on the heat capacity, which is a function of composition, requiring additional model calculations of thermosphere composition (O, N, N₂, O₂ etc)

The additional information needed to derive NO cooling can not be done in a 'routine' processing manner -- it will require intense study and iterations with the TIME-GCM model

SABER Algorithm Development

Virtually all of the SABER measurements in the TIMED core region (60-180 km) are of non-LTE radiative emission

The pertinent radiative transfer equation for SABER limb viewing is

$$R = \int_{v_1}^{v_2} \int_{x} J_{v}(x) \, \partial \tau_{v}(x) \, dv$$

Where J is the source function and $\partial \tau$ is the transmittance gradient

Under LTE J is identical to the Planck Blackbody Function evaluated at the local kinetic temperature

Under LTE, lower state populations are described by the Boltzmann distribution at the local kinetic temperature

Under conditions of non-LTE, neither of these statements is true

ALGORITHM DEVELOPMENT

There are 2 challenges to the interpretation of SABER data:

 Be able to calculate rapidly and accurately the limb radiance for a specified non-LTE condition

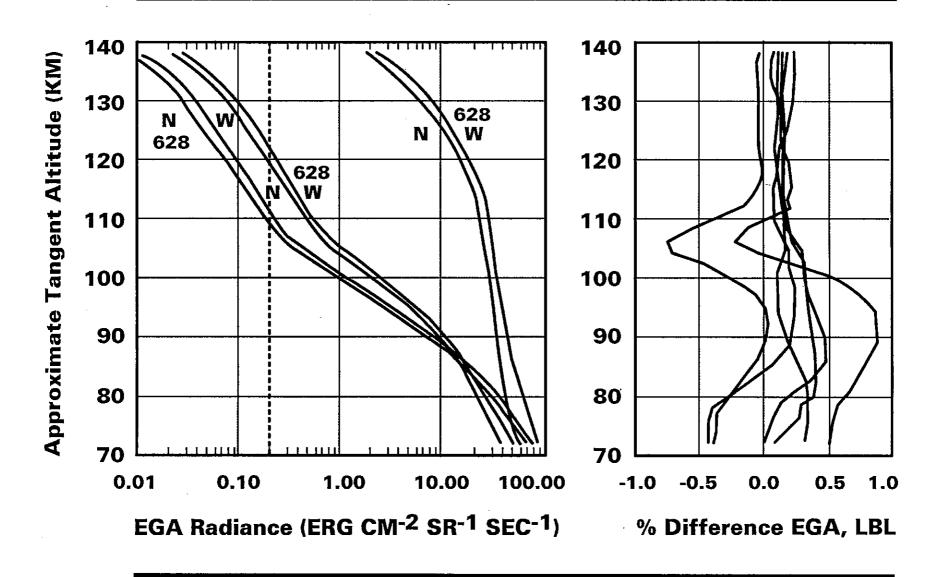
 Understanding the physical and chemical processes which result in the non-LTE energy level populations in the SABER-observed emissions and accurately modeling them

SABER Algorithm Development

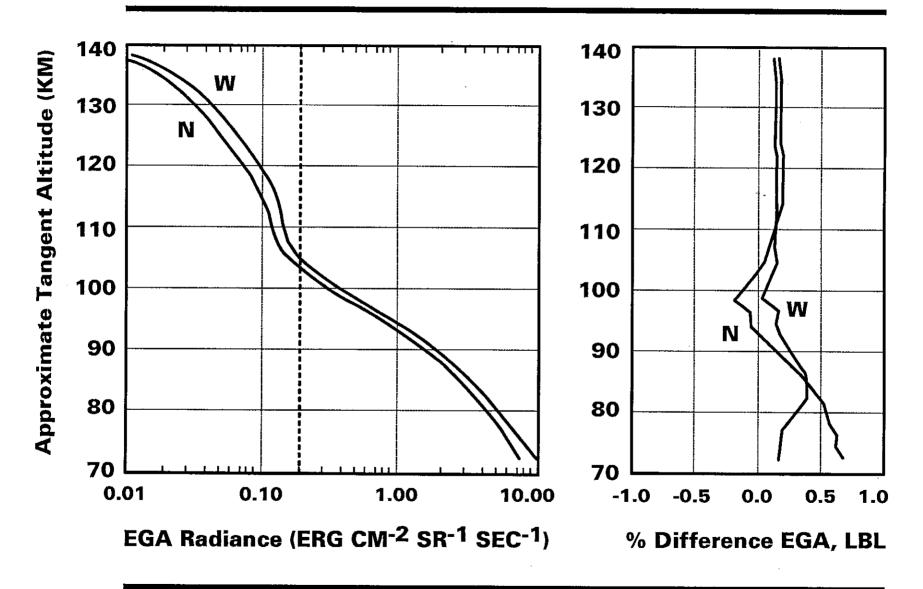
Radiative transfer calculation in non-LTE environment:

Calculations must be rapid and extremely accurate (0.5% or better)

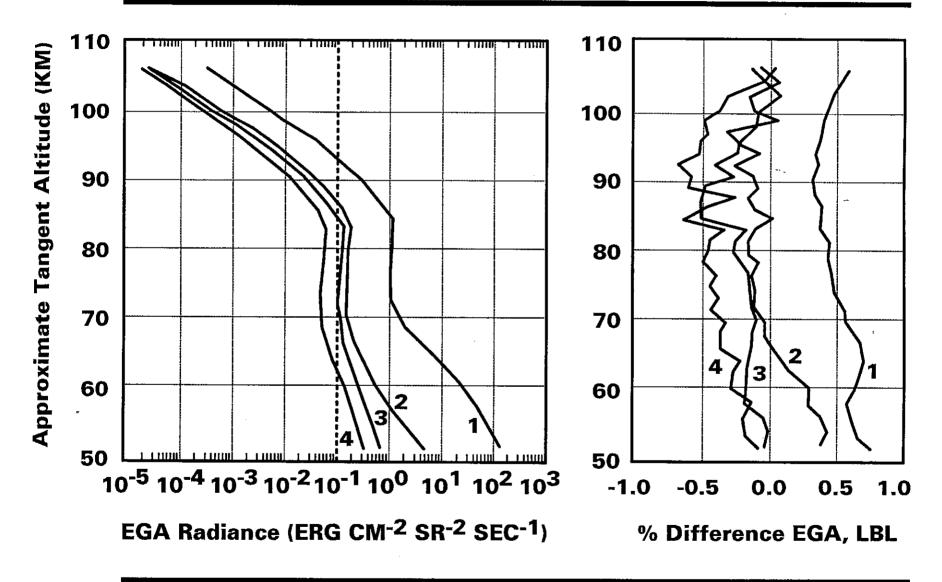
Approach:

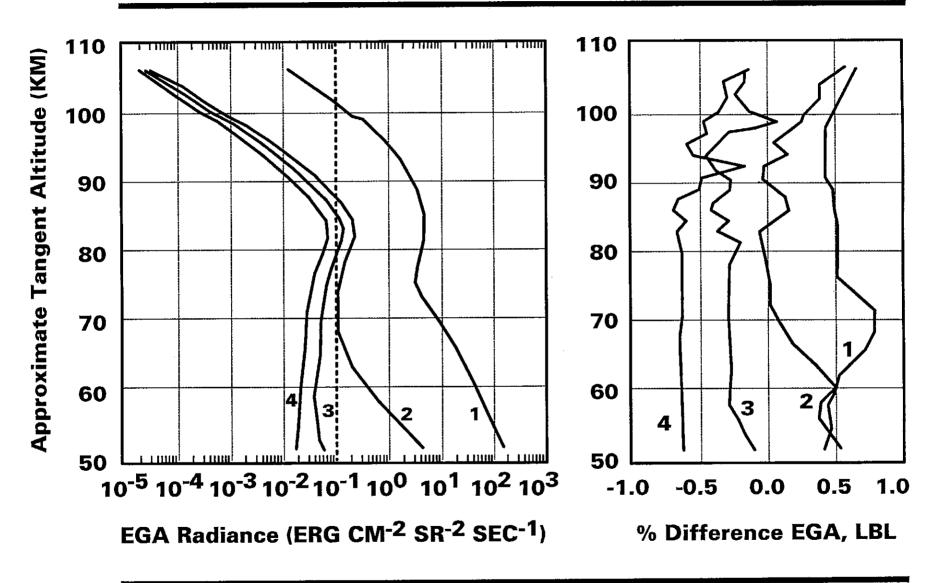

Extend the Emissivity Growth Approximation (Gordley and Russell) developed for LTE conditions (e.g., LIMS) to handle non-LTE

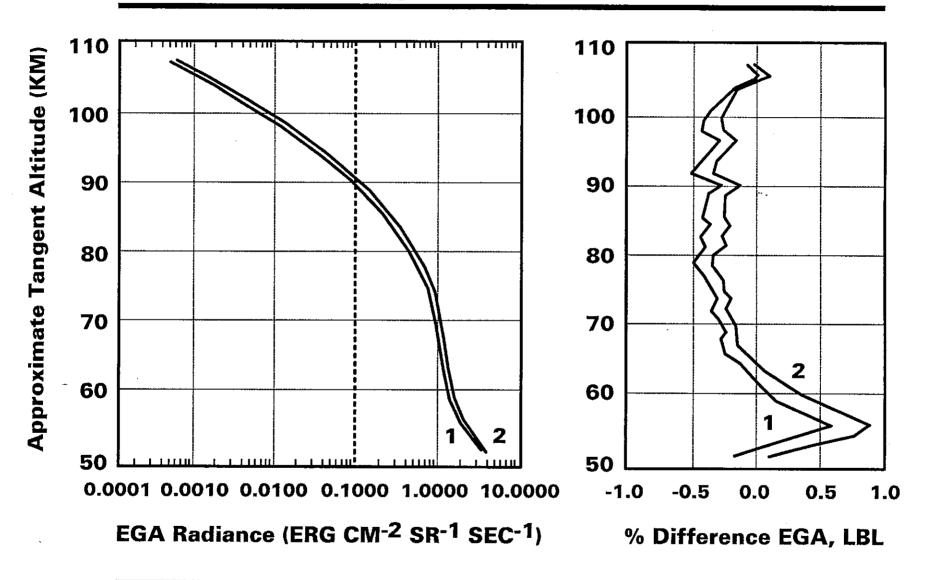
Involves adjusting lower-state populations in the calculation of transmittances for non-LTE populations

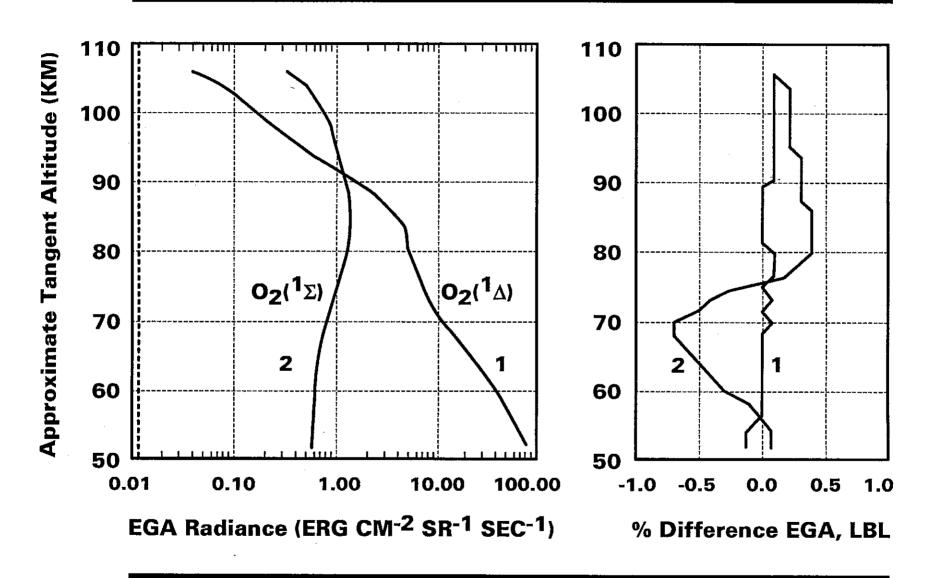

Adjustment/Correction depends on degree of departure from LTE, but is independent of wavelength for a given band/transition

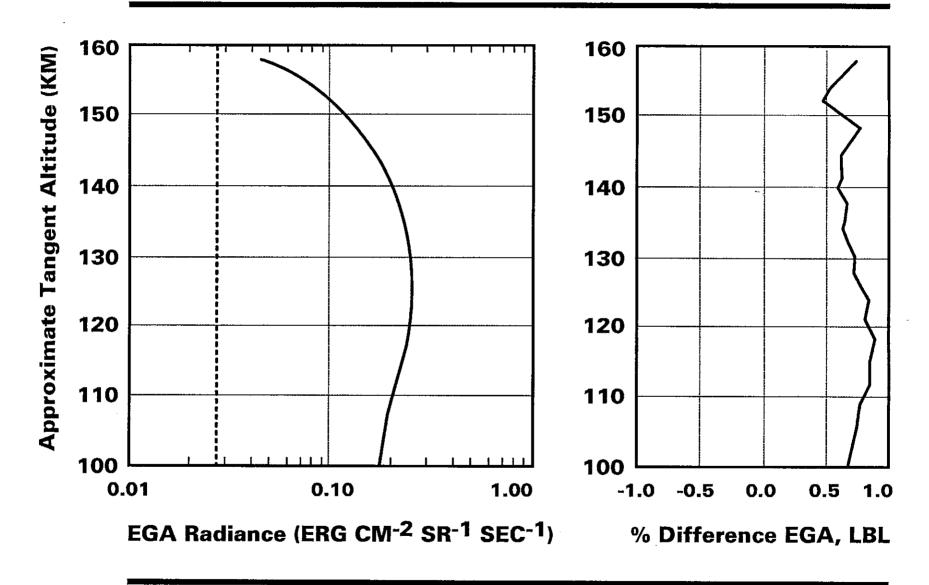
Technique now developed and demonstrated for all SABER channels (Mlynczak et al., JGR, 1994)


CO₂ (01101-->00001), Day


CO₂ (02201-->01101), Day


Ozone Day, 925-1141 CM⁻¹


Ozone Night, 925-1141 CM⁻¹


Carbon Dioxide Day, 925-1141 CM⁻¹

Molecular Oxygen Dayglow

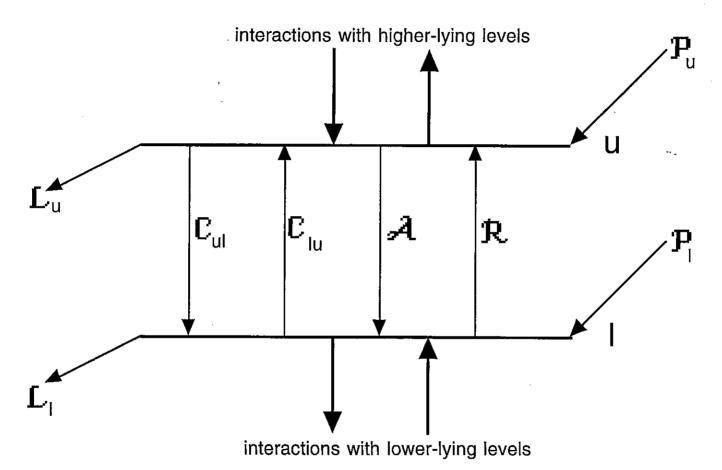
Nitric Oxide (NO) Day, 1775-1925 CM⁻¹

SABER Algorithm Development

The key to deriving SABER data products (Routine or Analysis) will be having comprehensive models of the radiative, chemical, and collisional processes by which the observed molecules exchange energy with their surroundings

The models describe the population of various excited states of a given molecule by explicitly accounting for all known energy gains and losses

The resulting populations, are different than expected based solely on the ambient kinetic temperature


The models provide source functions and transmittance corrections for use in inverting the radiative transfer equation to derive T, O3, etc.

These "non-LTE models" are non-trivial to develop and implement

Members of the SABER science team possess comprehensive, peer-reviewed "non-LTE" models for each SABER-observed molecule

The main C/D task in algorithm development is to develop algorithms for deriving geophysical information (T, O3, etc) by applying these models

EXCITATION AND QUENCHING PROCESSES

Collisional excitation Radiative absorption Chemical pumping

 \mathbb{C}_{ul}

R

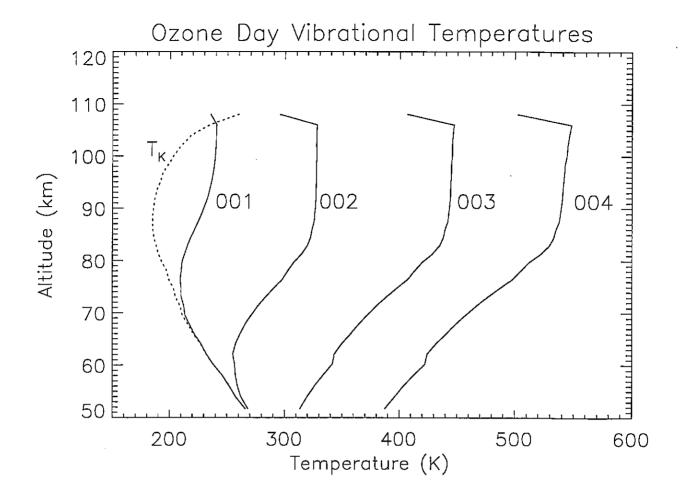
 \mathbf{p}_{i}

Collisional quenching Spontaneous emission A

Chemical reaction

SABER Algorithm Development

Derivation of Geophysical Information from SABER:

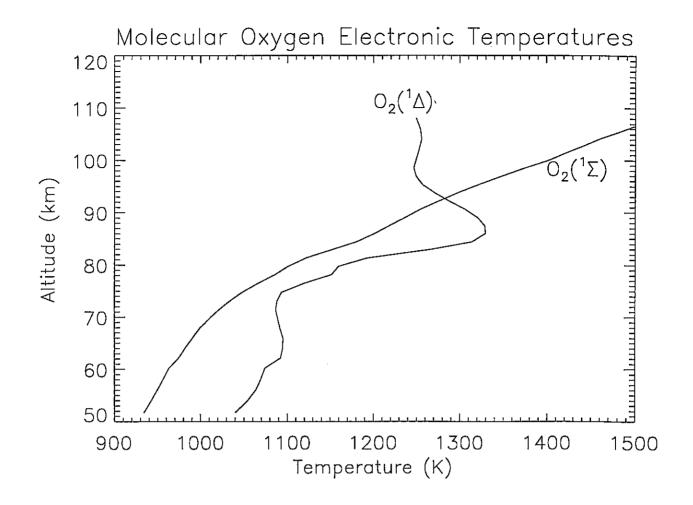

General Flow (Example of O_3 at 9.6 μ m):

- 1 Non-LTE Model Calculation of Vibrational Temperatures
- 2 "First Guess" of Ozone abundance
- 3 Limb Emission Radiative Transfer Calculation
- 4 Agreement with Measured Radiance?
- 5 Adjust ozone concentration
- 6 Go to step 3 until convergence
- 7 Calculate Tvib (Step 1) and compare with original
- 8 Iterate with new Tvib as necessary

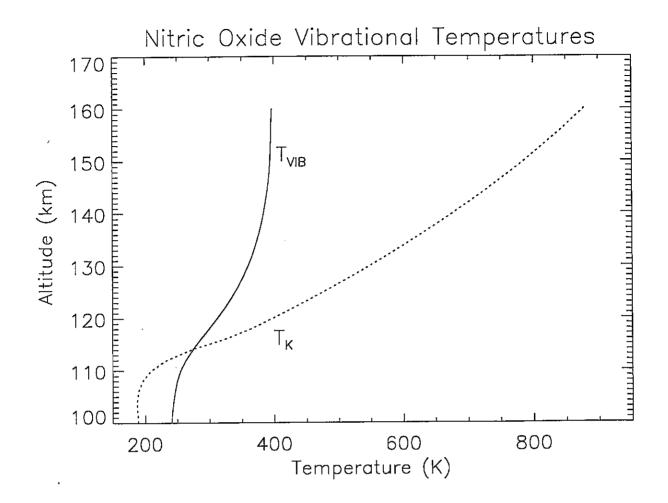
SABER Non-LTE MODEL STATUS

SABER Channel	Geophysical Data	<u>Model</u>
CO ₂ (15 μm)	T_{κ} , cooling rate	Lopez-Puertas et al., QJRMS, 1992
Ozone (9.6 μm)	O ₃ , solar heating, ir cool	Mlynczak and Drayson, JGR, 1990
H_2O (6.7 μ m)	H₂O, cooling rate	Lopez-Puertas et al., JGR, 1995
NO(5.3 μm)	NO(v), cooling rate	Picard et al. (numerous JGR)
CO ₂ (4.3 μm)	CO ₂ abundance	Lopez-Puertas et al., JGR, 1989
OH (1.6 μm)	H, chemical heating	Mlynczak and Solomon, JGR 1993, 1991
OH (2.0 μm)	H, chemical heating	Mlynczak and Solomon, JGR, 1993, 1991
$O_2(^1\Delta)$ (1.27 µm)	O ₃ , O, energy loss	Mlynczak et al. , JGR, 1991, 1993

JGR = Journal of Geophysical Research
QJRMS = Quarterly Journal of the Royal Meteorological Society



After Mlynczak et al., 1994


After Mlynczak et al., 1994

SDL/96-067

After Mlynczak et al., 1994

SDL/96-067

After Mlynczak et al., 1994

CO₂ Vibrational Temperatures

After Lopez-Puertas et al., 1992

SDL/96-067

SABER DATA ANALYSIS -- ADDITIONAL NEEDS

Non-LTE models require a priori specification of numerous parameters (e.g., Einstein coefficients for spontaneous emission, collisional quenching rates, etc.) for calculating vibrational temperatures supplied to the temperature and constituent processes

Uncertainties in these "rate constants", which are often supplied from laboratory measurement, degrade the accuracy of the SABER derived products

We are undertaking, species by species, an analysis and sensitivity study of the key parameters in each non-LTE model.

The purpose is to recommend, in formal publications, the accuracy to which the key rates must be known to achieved the desired accuracies of the SABER measurements

An example has already been published for the $O_2(^1\Delta)$ channel [Mlynczak and Olander, GRL, 1995]

Preliminary results for the O_3 9.6 μm channel are being presented next week at a special Session of the American Geophysical Union [Mlynczak et. al, 1996]

SABER ALGORITHMS: SUMMARY

SABER measurements and data products are sufficient to meet TIMED goals of thermal structure and energy balance

Limb radiative transfer calculation approaches/techniques for non-LTE are developed

Non-LTE/Statistical Equilibrium Models exist for all SABER channels

All transfer calculation approaches (Non-LTE EGA, and Line-by-Line) and Non-LTE models have been published in the peer-reviewed literature

We are in the process of a formal error analysis of SABER measurements to identify areas of improvements in key kinetic and spectroscopic rate coefficients used in non-LTE models

Application of the existing calculation techniques and non-LTE models into formal temperature and constituent retrieval algorithms is now underway and will constitute the major 'science' effort during Phase C/D.

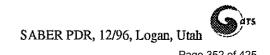
SOFTWARE DEVELOPMENT PLAN

Larry Gordley

GATS Inc. 28 Research Drive Hampton, VA 23666 (757) 865-7491

December 1996

GATS Software Development Plan


Major Tasks

Personnel and Responsibilities

Hardware and Software Environments

Quality Assurance and Methodology

Schedule

GATS Software Development Task

Processing Phase

Major Functions

Code Source

POC System Development

RT data aquisistion

New/SAGE III

POC GUI

Command Scripts

Level 0

Display

HALOE, SAGE III

Data Formatting

SAGE III

Ingest

New

Test & Calibration

GSE Data Management

Data Analysis

New

New/LIMS

Level 1a

Reformatting

Trending Tools

Auxiliary Access & Merge

SAGE III

HALOE

New

SABER PDR, 12/96, Logan, Utah

Software Development Tasks

Processing Phase

Major Functions

Code Source

Level 1b

Calibration

LIMS

Conditioning

Bad data filtering

New

FOV

LIMS

Profile alignment

LIMS

Spacecraft motion

New/LIMS

Off-axis scattering

New

Time delay

LIMS

Data averaging

New

Boresight correction

New

Earth oblateness

LIMS

Special Calibration

Lunar

New

Roll-up

New

IFC T change

New

SABER PDR, 12/96, Logan, Utah

Software Development Tasks

Processing Phase

Major Functions

Code Source

Level 2a Processing (routine products)

Forward model

BANDPAK

Volume emission

rate inferrals

LIMS

LTE parameters retrievals

LIMS

Non-LTE parameters retrievals New

Level 2b Processing (analysis products)

Forward model

BANDPAK

Cooling rates

New

Non-LTE retrievals requiring

auxiliary models

New

Heating rates

New

Software Development Tasks

Processing Phase

Major Functions

Code Source

Level 3 Processing - Gridding

Will be major changes for

some products due to

diurnal characteristics

LIMS/New

Validation

Rendering software

HALOE

Data base management

HALOE

Correlative data management

HALOE

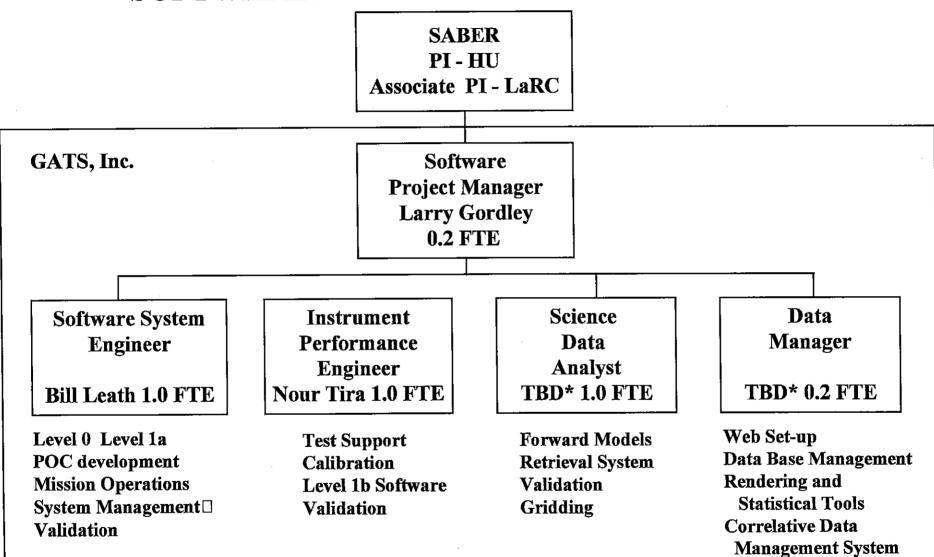
Statistical analyses

HALOE

Access-Web Based

Data ingest and access

HALOE


Project information data base

HALOE/SABER

Image generation

HALOE

SOFTWARE DEVELOPMENT ORGANIZATION

* Experienced personnel available but not yet assigned FTE Full Time Equivalent

Hardware & Software Environment

Hardware

Local networked PC's

Magnetic disk plus optical storage

T1 internet connection is sufficient for data transfer

Printers - Color and black & white

Notes:

- Storage is minimal by todays standards
- GATS, Inc. rates include desktop computer facilities for employees. No further computational resource is necessary for routine processing (through level 2a plus level 3). Computational requirements for level 2b (analysis products) is still TBD.
- A storage system for local archive of all products, and the necessary computational resources for all processing, will be established at LaRC.
- Level 2b phase E processing facilities requirements are still TBD and these will be defined in phase C/D.

Software

NT environment for POC

UNIX environment for science

C, FORTRAN, JAVA/JAVASCRIPT, IDL (Interactive Data Language), WebServer, CVS (configuration control package), POSTGRESS (data base management package), S³ (a GATS structured system module controller)

Note:

• C, FORTRAN, IDL and server software must be purchased.

Quality Assurance

• Are striving to follow ISO 9000 guidelines - the 20 standards

• Have developed a system that is consistent with the team size and cost constraints, but yet achieves the characteristics of

Documented

Monitored

Controlled

Improved

Auditable

Effective

• Attributes

Efficient

Automated

Neatly integrated into development methodology

Sufficient

- Currently documenting the system
- Company Quality Assurance Officer Mr. Earl Thompson

Methodology Includes

- 1. Documented and controlled requirements
- 2. System level design reviews
- 3. Detailed design reviews
- 4. Structured and modular coding methods and tools
- 5. A configuration control system for code, documents and test cases
- 6. Documented and reviewed testing at both unit (module) and system level
- 7. Data quality monitoring
- 8. Code documentation which includes purpose, a user guide, structure charts, input and output descriptions

Requirements

Requirements will be documented and put under the CVS (Concurrent Version System) version control software package. These documents will be kept online and accessible over the Web by project personnel. The close working relationship with the science team insures that requirements will be reliably communicated in a timely fashion.

System Design Reviews

Design reviews include a system description and purpose, functional and data flow diagrams, and function and data description. At the hardware level, it will also include hardware requirements and suggested components. For a system of software modules, it will include structure charts and module purpose, inputs and outputs. Design review dates and document references will be logged into the subject software prologues.

Detailed Design Reviews

Detailed design reviews will be conducted for critical module or system interfaces. Reviews for independent modules will be held on an as needed basis. For small tasks, detailed review, test review and certification will be combined in one review. All detailed design reviews will be logged in the subject code prologues.

Coding Methods

Coding methods will follow structured top down methodologies. The standard GATS prologue form will be used (see attached example) with QA information logged in the prologues. These logs will include reviews, document references, responsible person, code corrections, code improvements, tests and certifications. Code modules will be written for clarity with comments where clarity dictates. PDL (Program Design Language) is optional.

Configuration Control

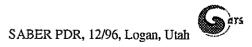
Managed using the software package CVS

Documents kept under control:

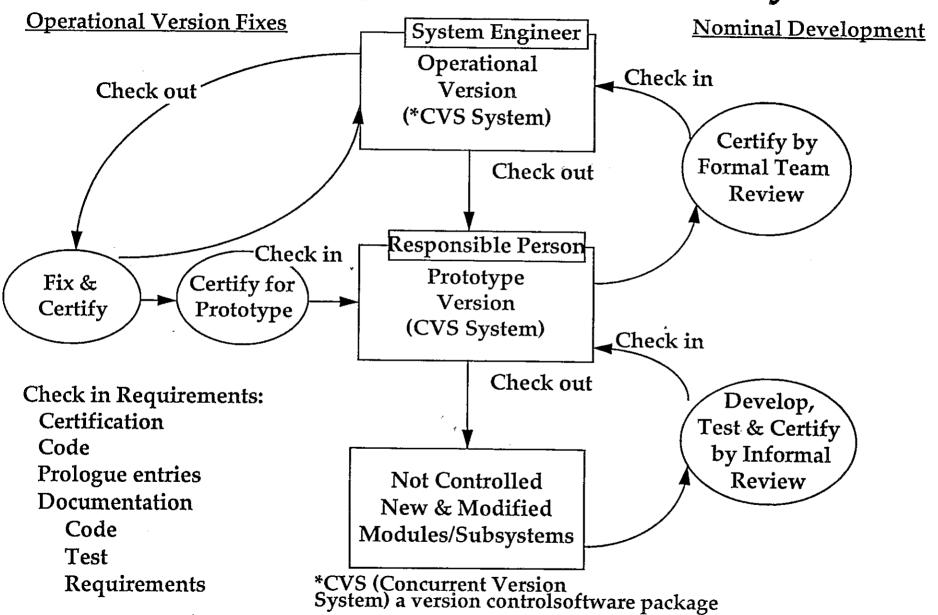
Requirements

System descriptions (reference)

User guides


Code

Three tier system


Operational - Current static operational version

Prototype - New version under development

Research - Modules not yet under configuration control

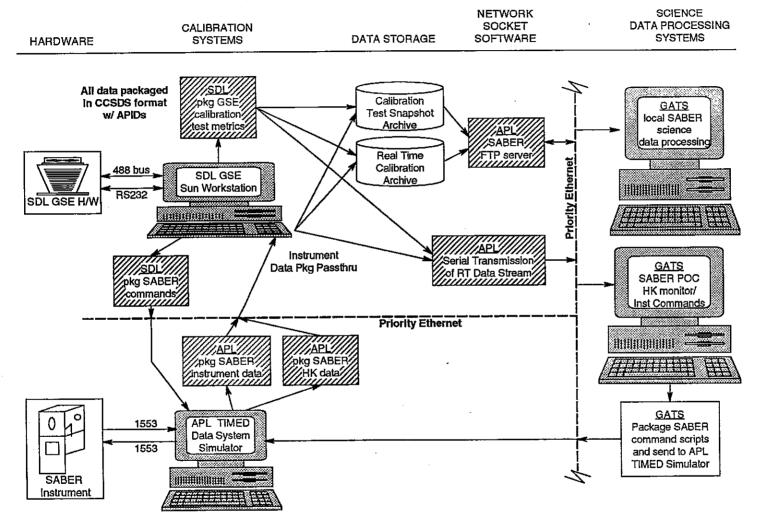
GATS Configuration Control System

Processing System Overview

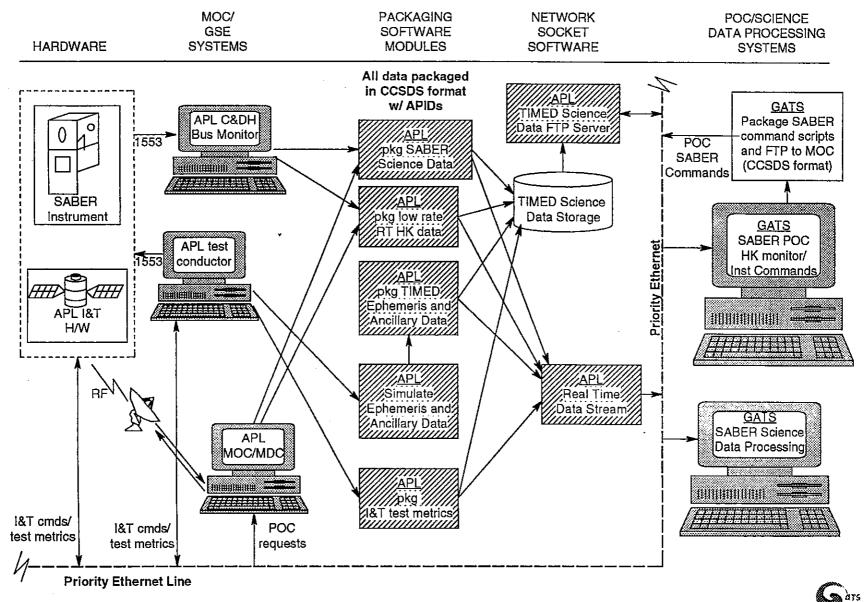
- Instrument Calibration
- Integration and Test
- Mission Operations
- Science Data Processing
- Validation
- Archive and Access Systems

Configuration Control CVS Sample File

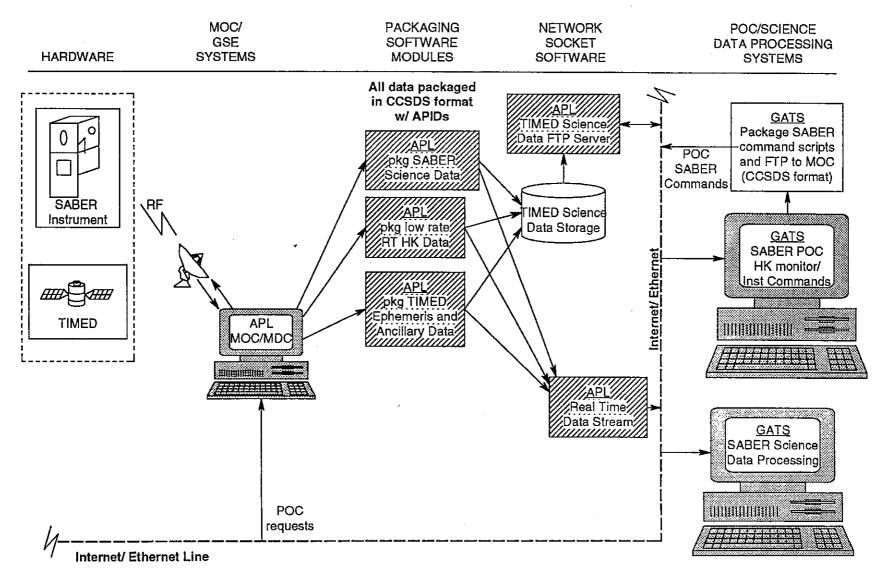
C \$Id: main.f,v 2.1 1994/07/08 17:52:23 jcburt Exp \$

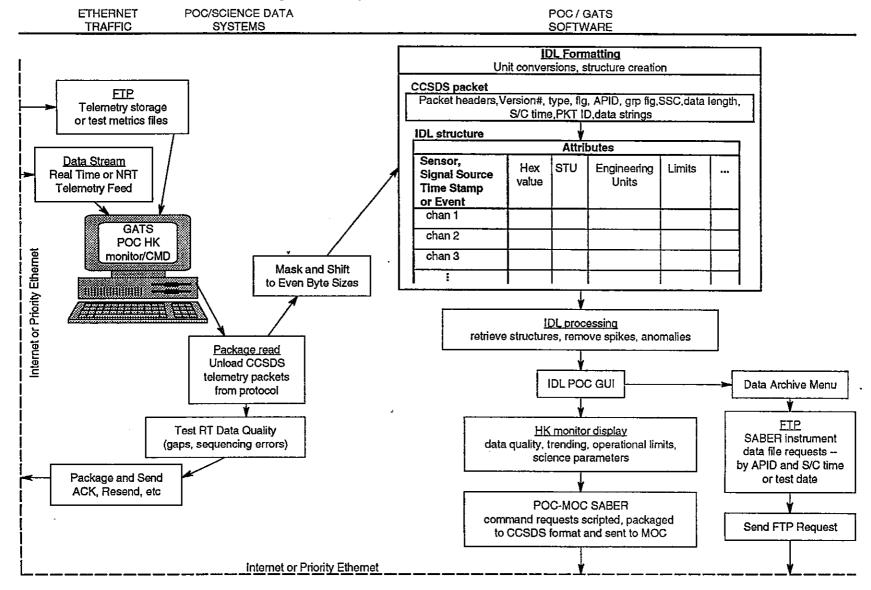

\$Id\$ is a CVS variable containing the filename, version, date/time and userid of the person who most recently modified the file.

\$Log\$ is a CVS variable that is updated each time the file is checked in. It automatically prepends the most recent log entry to the loglist. At minimum a log entry contains the version number, date/time and userid of the person checking the file in. The version numbering scheme will be based on a convention that will distinguish between changes, fixes, prototype code and production processing code. An example 4 digit numbering scheme might look like: <major>.<minor>.<change>.<fix> where: <major> =3D Release Number

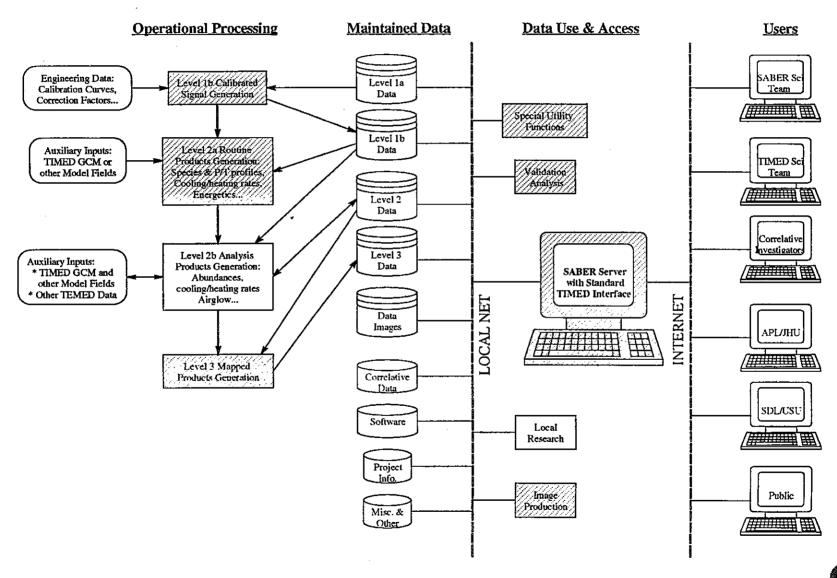

C	Revision 2.2 1994/07/08 17:52:23 jcburt
Ċ	TEST, REVIEW - Completed final code testing & acceptance review
C	BTM & LLG Reviewing
C	Test procedure available in /home/jcburt/doc/codetest.doc
C	Results available in /home/jcburt/doc/results.doc
Ċ	-
	Revision 2.1.1.2 1994/07/01 18:48:27 jcburt
Ċ	PROGRESS - Completed construction of final test suite. Debugging of
Č	the test suite code is currently in progress
Č	
	Revision 2.1.1.2 1994/06/28 18:48:27 jcburt
Č	BUG FIX - Off by one error in array indexing for RAD1
Ċ	
	Revision 2.1.1.1 1994/05/18 11:45:17 jcburt
Č	CHANGE - Revised the algorithm for radiance matching to use the
Č	slope of the log of the radiance
Č	
	Revision 2.1.0.1 1994/04/08 08:08:00 jcburt
Č	CERTIFICATION - PDR accepted design - BTM & LLG reviewing
č	Oblinion iskubopto boog. Sin or about the
-	Revision 2.1.0.1 1994/04/07 09:00:00 jcburt
č	
č	TENTE TO THE DESTRUCTION OF THE PROPERTY OF TH
-	Revision 2.1.0.1 1994/04/05 16:00:00 jcburt
č	REQUIREMENTS - This module required to serve as a CVS example
č	TEL CITEDITIES THIS HOUSE TO QUITO BO I C TO CHAMPIO
Č.	
C	,
_	SUBROUTINE Dummy(x,y,z)
C-	· · · · · · · · · · · · · · · · · · ·
Č	
-	Routine: Dummy
Č	Routine. Duning
	Written By: John Burton Wed Nov 20 10:01:40 1996
C	11.11.01.05. John Duiton 11.00 20 10.01.40 1990
_	Purpose: Example of CVS
C	rathose. Evanible of CA2
C	

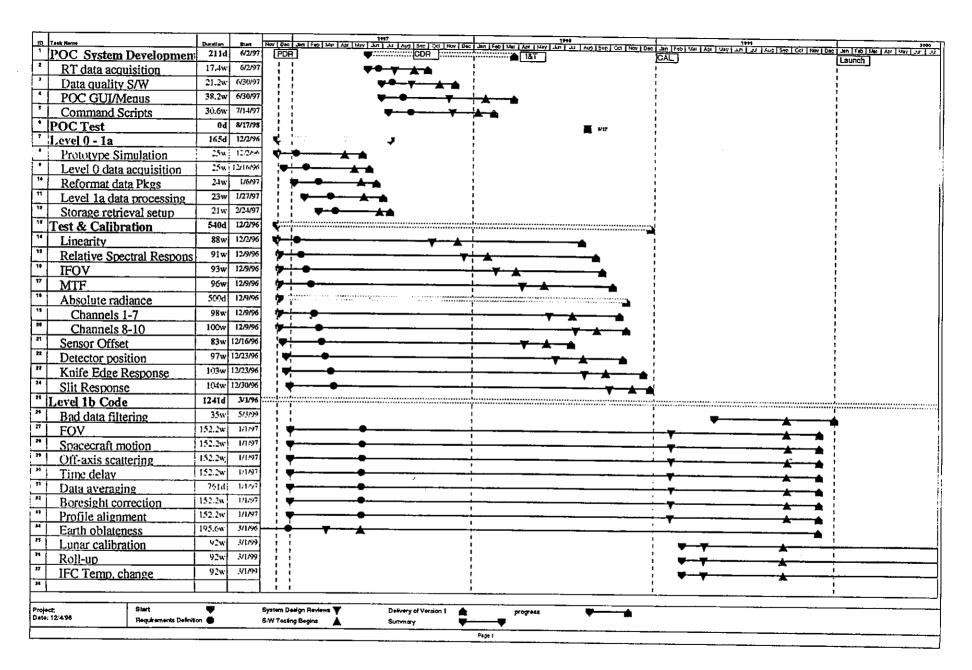
```
C
       IMPLICIT NONE
       IMPLICIT AUTOMATIC (a-z)
    INPUT Parameters:
\mathbf{C}
                              ! double precision variable type
       DOUBLE
                               ! latitude, meters
      &
                               ! longitude, meters
                  у
\mathbf{C}
    OUTPUT Parameters:
      DOUBLE
     &
                                 ! altitude, meters
   Include Files:
\mathbf{C}
    Constants (PARAMETER Statements):
C
   Explicitly Declared Local Variables:
    Executable Code:
      Z = Function(X,Y)
      RETURN
      END
                       ! Subroutine Dummy
```

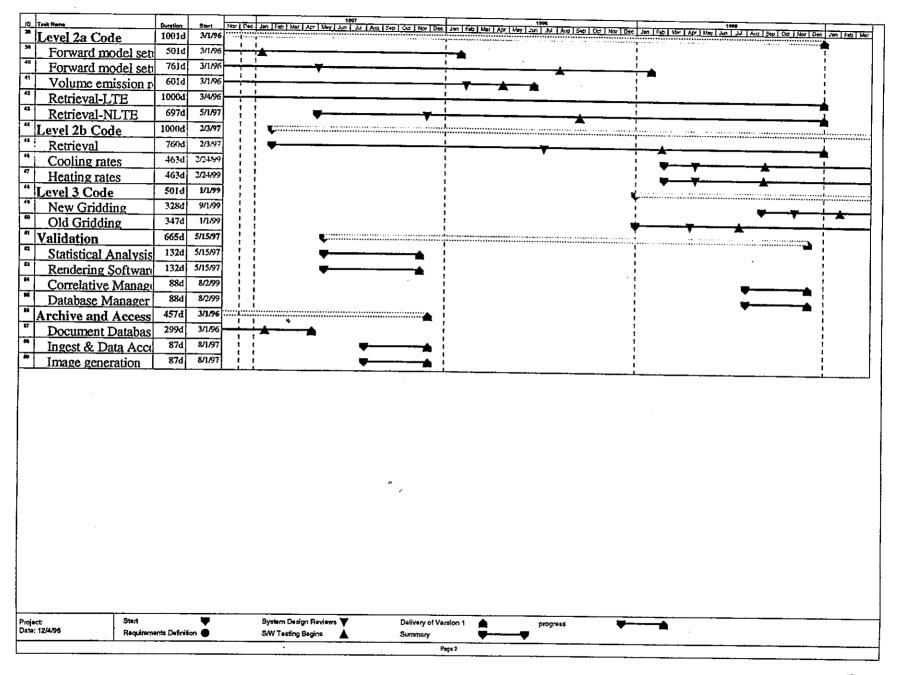

Saber Calibration Data Flow


Integration and Testing Data Flow

Mission Operations/Payload Operations Data Flow


Payload Operations Center Data Flow




SABER Level 0 to 1A Science Data Flow

POC/SCIENCE DATA POC/GATS **ETHERNET TRAFFIC SYSTEMS** SOFTWARE IDL Formatting Unit conversions, structure creation CCSDS packet **FTP** Packet headers, Version#, type, flg, APID, grp flg, SSC, Telemetry storage data length, S/C time, PKT ID data strings or test metrics files IDL structure Attributes Sensor, STU Hex Engineering Limits Signal Source GATS value Units Time Stamp Level 0 Science or Event Data Processing chan 1 chan 2 (1111) chan 3 IDL processing Package read retrieve structures, remove spikes, anomalies Mask and Shift **Unload CCSDS** telemetry packets to Even Byte Sizes Internet or Priority Ethernet from protocol Data Archive Menu GATS ETP Science Data Level 1A Processors SABER instrument Storage Level 0 data file requests --Storage by APID and S/C time or test date Send FTP Request Internet or Priority Ethernet

SABER Level 1b through 3 Processing Steps and Data Access

PRODUCT ASSURANCE

RICHARD AUSTIN

December 10, 1996

PHONE: 801-755-4183

FAX: 801-755-4299

E-MAIL: richard.austin@sdl.usu.edu

PRODUCT ASSURANCE

Scope

SDL's product assurance activities are defined in the SABER Product Assurance Plan (SDL/94-088) which was developed in compliance to the requirements of DRD 8, Assurance Management Plan, and DRD 11, Configuration Management Plan

Overview

This presentation will show a summary and status of the assurance activities that will be performed by SDL

SUBCONTRACTOR CONTROL

- SDL's subcontractors are required to comply with SDL's Product Assurance Plan
- Exceptions to SDL's Product Assurance Plan shall be negoiated between the subcontractor and SDL
- Periodic audits to the subcontractors will be performed by SDL to assure compliance to the Product Assurance Plan
- SDL will perform source inspection for final acceptance testing and buy-off

DELIVERABLE DATA REQUIREMENTS

- Product Assurance Plan
 - Preliminary prior to SRR
 - Final 30 days after PDR
- Parts and Materials Lists
 - Preliminary prior to PDR
 - Updates at CDR and PSR
- Safety Checklist at CDR
- Acceptance Data Package at PSR
 - As-built configuration list
 - Parts and materials list
 - Formal acceptance test reports
 - Approved waivers

SAFETY

- Precautions shall be taken for protection of personnel safety
 - Review of potentially hazardous or dangerous materials and processes
- Provisions shall be taken for protection of deliverable hardware
 - Review of potential electrical and mechanical interface hazards
 - Protection against uncontrolled environments
 - Protection against electrostatic discharge (ESD)
 - Provide for appropriate handling procedures and fixtures, including proof testing of fixtures.
- A Safety Checklist shall be prepared for each subsystem

EEE PARTS SELECTION CRITERIA

Grade 1 parts

- MIL-M-38510 class S microcircuits
- MIL-S-19500 JANS semiconductors
- S failure rate level, established reliability, passive and electromechanical parts

Grade 2 parts

- MIL-M-38510 class B microcircuits
- MIL-S-19500 JANTXV and JANTX semiconductors
- Minimum P FRL, established reliability, passive and electromechanical parts

Grade 3 parts

- MIL-STD-883 class B microcircuits
- Standard Military Drawing (SMD) microcircuits
- MIL-S-19500 JAN semiconductors
- Minimum M FRL, ER and Non-ER, passive and electromechanical parts

Grade 4 parts

Commercial parts

PARTS SELECTION PROCESS

- Grade 1 or 2 parts will be used when:
 - Available with no impact on cost and schedule
- Grade 3 parts will be used when:
 - Grade 1 and 2 parts are not available
 - Cost and schedule of grade 1 and 2 parts are prohibitive
- Grade 4 parts (commercial) will be used when:
 - Grade 1, 2, and 3 parts not available
 - Required circuit function cannot be achieved using higher grades
 - Approved on an in-house Nonstandard Parts Approval Request (NSPAR)
- Printed Wiring Boards
 - Manufactured to MIL-P-55110

MATERIALS CONTROL

- Metallic materials will be selected from Table 1 of MSFC-SPEC-522, Design Criteria for Controlling Stress Corrosion Cracking. Materials from Table 2 or 3 require justification and approval
- Nonmetallic materials shall meet the following outgassing requirements in accordance to NASA Reference Publication 1124, Outgassing Data for Selecting **Spacecraft Materials**
 - 1.0% maximum Total Mass Loss (TML)
 - 0.1% maximum Collected Volatile Condensable Material (CVCM)
- Purchased parts and critical materials shall be maintained in a controlled stockroom
- Lot traceability of parts and materials shall be maintained from procurement through all phases of assembly

CONFIGURATION MANAGEMENT AND CONTROL

- Flight hardware shall be fabricated, assembled, and tested to controlled engineering drawings and specifications with subsequent redlines and authorized updates
- Configuration control of drawings and specifications shall be governed by:
 - SDL/90-011, Drawing Procedure
 - SDL/90-010, Drawing Change Control Procedure
- Drawing changes (ECOs) shall be reviewed and approved by:
 - Cognizant engineer
 - Quality assurance
 - Documentation control group (release, filing, and distribution)
- System requirements, management plans, and other contract documents shall be maintained under configuration control
- · Configuration changes to these documents shall be approved by:
 - SDL Program Manager
 - SDL Quality Assurance
 - LaRC Representative
 - SDL Documentation control group

QUALITY ASSURANCE

Traceability

- Purchasing and receiving records maintained for all parts and materials
 - Certificate of conformance including lot control
- Computer records for all as-built flight hardware will be maintained
- Parts and materials tracked for each detail part and assembly
- Forward and backward traceability capability

Controlled stockroom

- Computer records of all controlled parts will be maintained
- Locked storage cabinets for all controlled flight parts
- ESD protection for static sensitive parts
- Limited access

QUALITY ASSURANCE (cont.)

Manufacturing control

- Cognizant engineer and technician assigned to a particular component and subsystem throughout the life of the program
- Shop travellers will be used to document history of work operations, inspections, and tests
- Quality assurance will verify compliance, traceability, and workmanship of flight hardware

Training and certification

- Required for all welding, soldering, and ESD operations
- Trained and skilled personnel will be used for all operations
- Records of certified personnel maintained by quality assurance

QUALITY ASSURANCE (cont.)

QA inspections

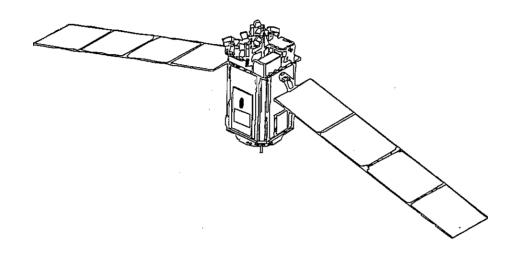
- Receiving inspection
- In-process inspection
- Final inspection

Testing

- Testing will be performed as specified in the SABER Master Test Plan, SDL/95-021
- Engineering level testing will be recorded in laboratory notebooks
- All test tests called out in the statement of work will be referenced on shop traveller
- Functional and environmental test results will be recorded and maintained by the cognizant project engineer on test data sheets
- Records of formal acceptance testing will be maintained by Quality Assurance

QUALITY ASSURANCE (cont.)

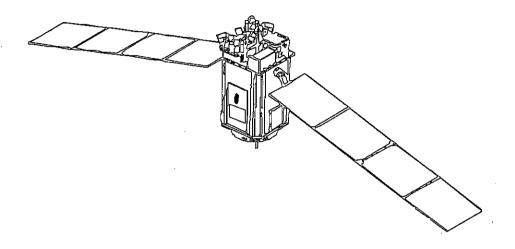
Nonconformance control


- All nonconformances shall be documented:
 - In laboratory notebooks during prototype and engineering development
 - On discrepancy reports for flight hardware
- SDL will send a monthly DR summary report to Larc
- Material Review Board
 - · Members Quality Assurance, Project Engineering, and Program Management
 - Shall make all dispositions except those warranted by a waiver
 - Discrepancy reports shall be maintained by quality assurance
- Waivers will be submitted to LaRC for approval where there is a deviation from safety, performance, reliability, weight, interface, or basic contract requirements

SDL/96-067

·iew

SABER Preliminary Design Review Cost Schedule and Descope


Contract No. NAS1-20467 December 12, 1996

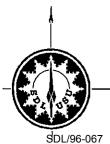
SPACE DYNAMICS LABORATORY UTAH STATE UNIVERSITY LOGAN, UTAH 84321-1942

SABER Preliminary Design Review Cost Schedule and Descope

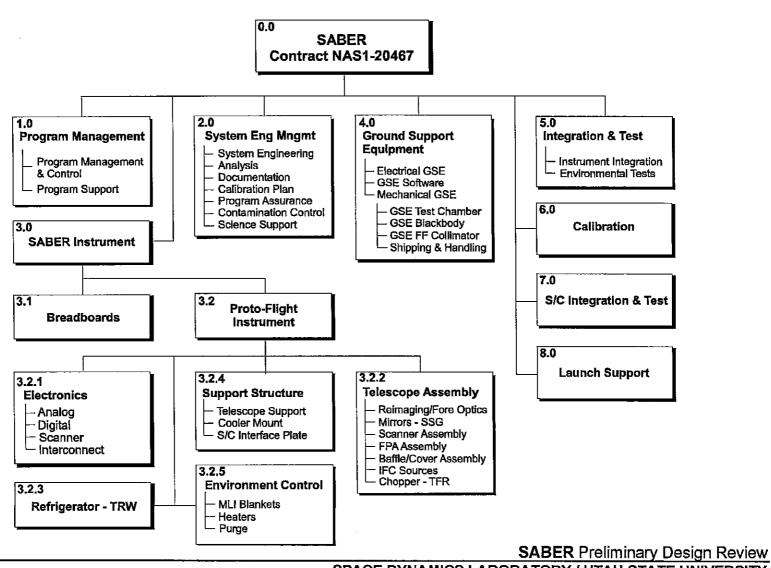
Contract No. NAS1-20467 December 12, 1996

SDL/96-067 Page 391 of 425

SABER PROJECT WBS & SCHEDULE


Lorin Zollinger

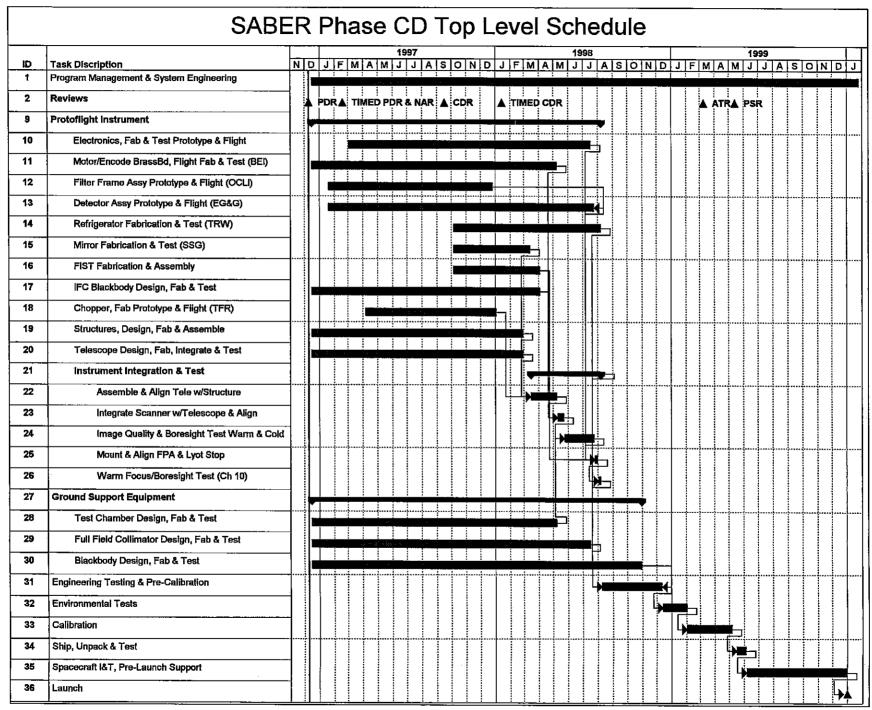
December 12, 1996

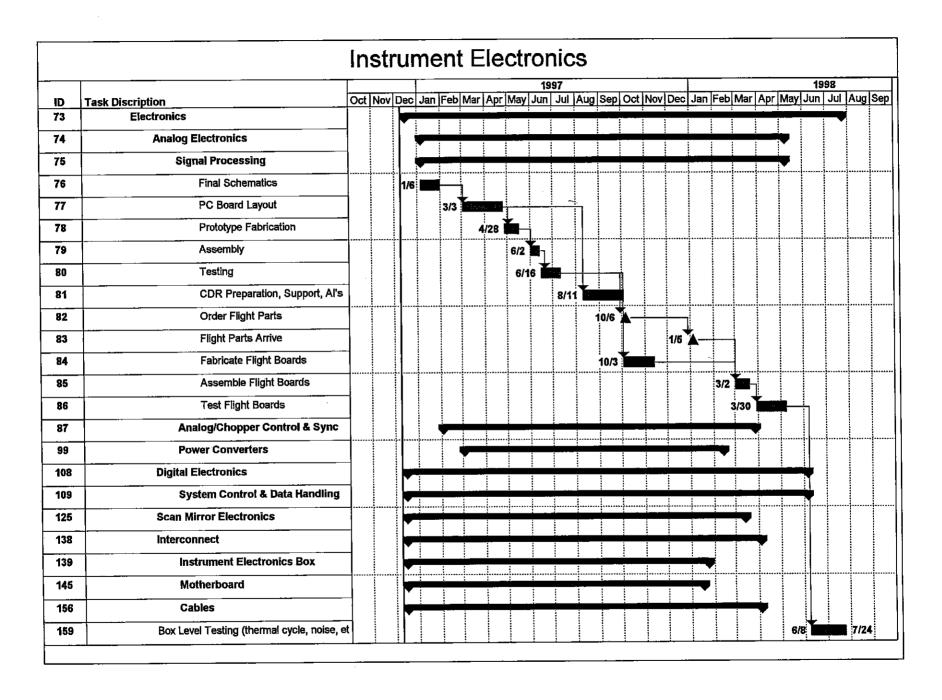

Phone: (801) 755-4275

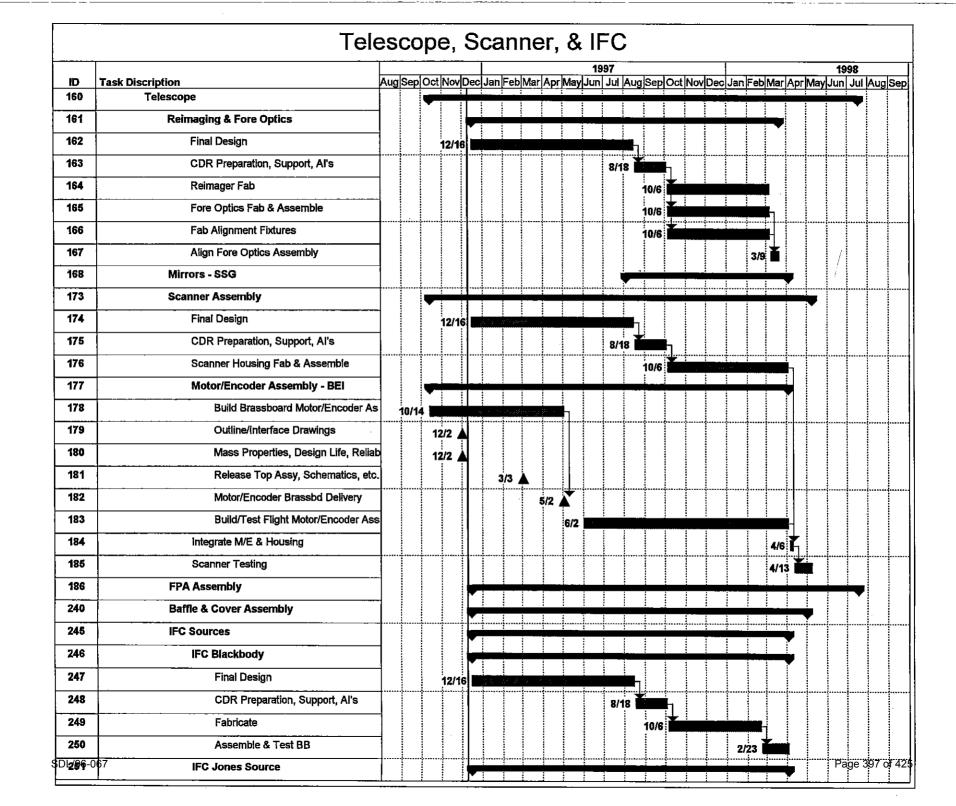
Fax: (801 755-4299

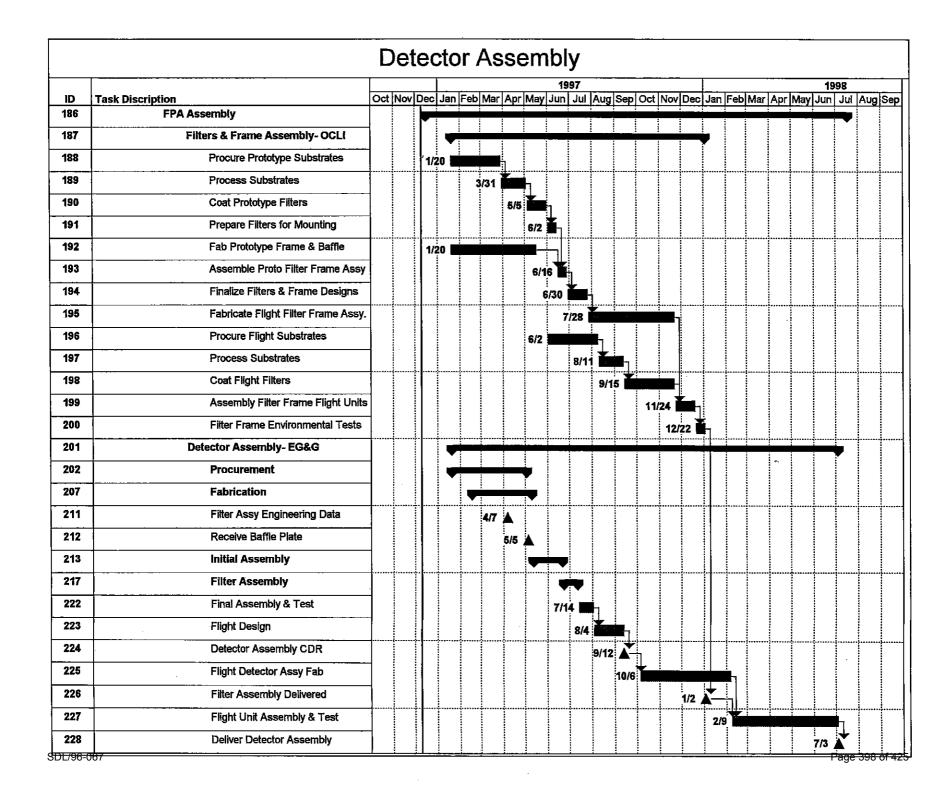
E-Mail: lorin.zollinger@sdl.usu.edu

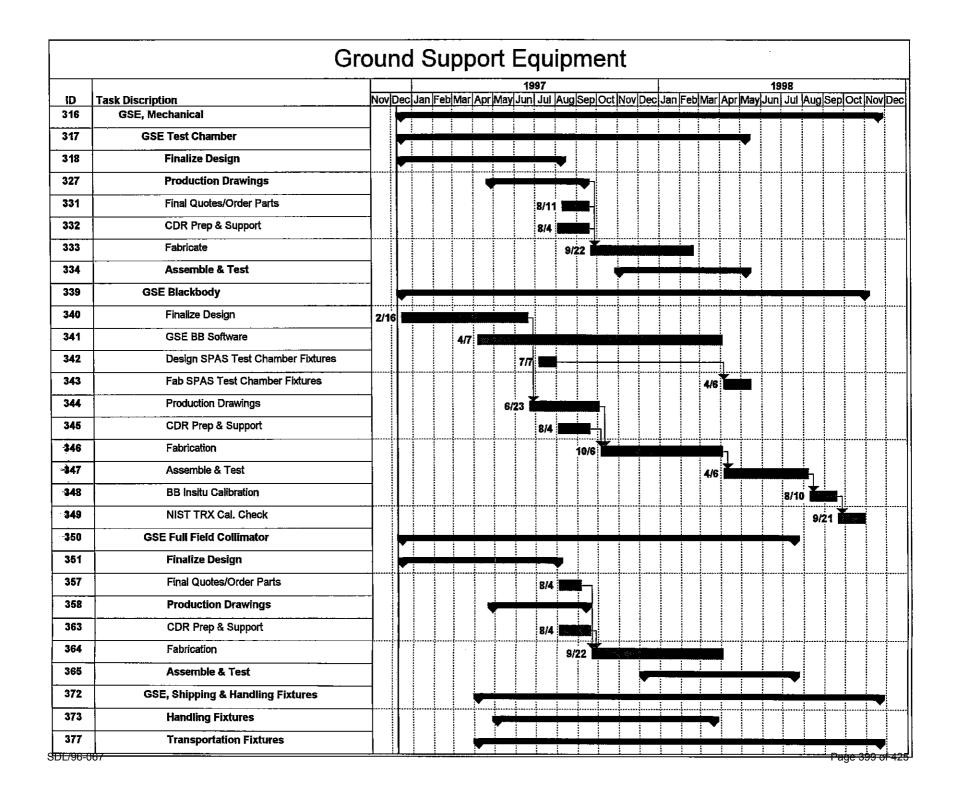
SABER WBS Key Elements

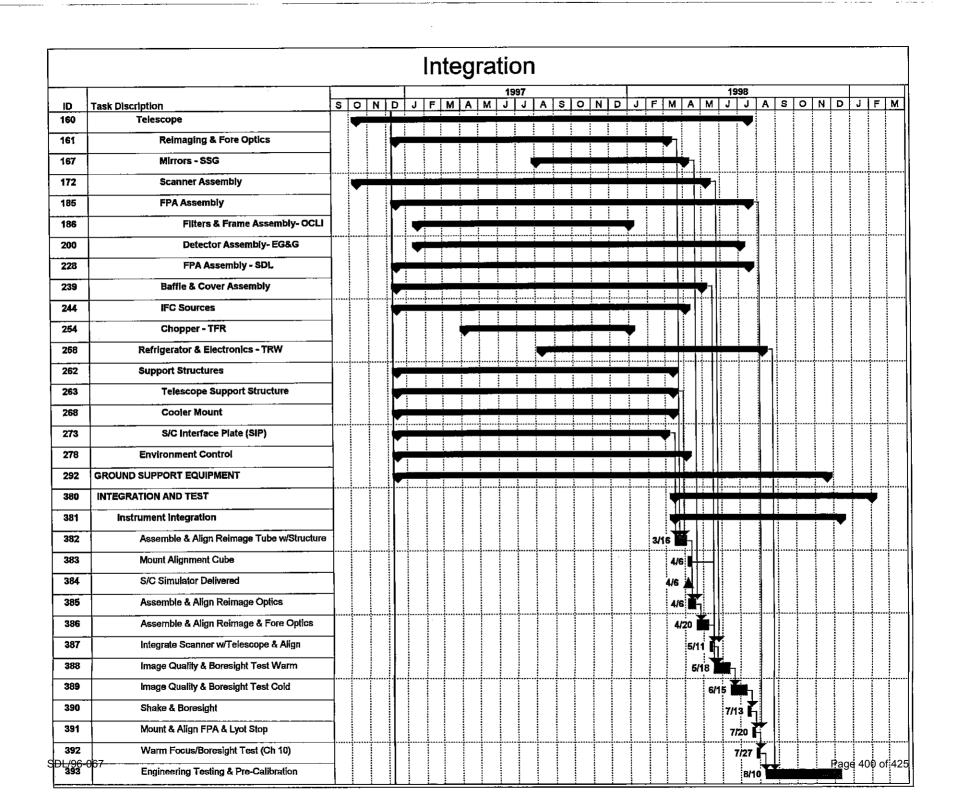


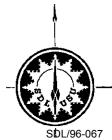

SDI /96-067


SABER Project Schedules


- SABER Project uses Microsoft Project scheduling software
 - This tool used to create the SABER project plan
 - Organize and track project tasks
 - Allows setting a baseline and tracking progress against the baseline
 - Set task constraints, relationships and dependcies
 - Easliy modified as project guidelines and funding profile changes
 - Shared electronicly with LaRC on a regular basis
- Following schedule is a tenative Phase CD baseline schedule
 - Based on present (soft) project guidelines and funding expectations





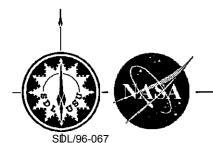


	· ·									19	99						
ID.	Task Discription	Oct	Nov	Dec	Jan	Feb	Mar	Арг	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jai
396	Environmental Acceptance Testing			_													
397	Thermal & Structural Testing			_													
398	Full Functional Test		12/	14 ▮┐						<u>.</u>		<u> </u>					<u> </u>
399	Thermal Vacuum Balance	i	12	17													
400	Thermal Vacuum Cycle		1	2/24	E												
401	Full Functional Test			12/31													
402	Sine Burst			1/5	ΙŢ							<u> </u>					
403	Abbreviated Function Test			1/0	 												
404	Random Vibration			1/1							! ! !			•			
405	Full Functional Test	***********		1/	12	ļ					············	<u> </u>	1				ļ
406	EMI Tests - NTS			,	 1/19 1	ļ E											
407	Full Functional Test				1/26	<u>.</u>											
408	CALIBRATION			†····	1	¥				*	ļ						
409	FFCOL measurements				1												
410	IFOV				2/2	†											
411	Slit Source				2/3	H		·						<u> </u>			1
412	Temporal				2/3	+											
413	RSR					*											
419	Linearity			<u> </u>	<u> </u>	T	_					<u> </u>	<u> </u>	<u> </u>			<u> </u>
425	Warm					3/	0 H				1						
426	Low Temp BB Measurements							*									
434	High Temp BB Measurements		1	1		1	4		1		<u> </u>		1		1	,	<u> </u>
441	Sensor Boresite							>									
442	Pump						4	/15									
443	Warm measurement					1	†	4/19	-		·}	<u> </u>					
444	Cool							4/21									
445	Cold measurement							4/22) 1								
446	Warm			†		1	·	4/26	 		İ	†		·			<u> </u>
447	Knife Edge Measurement				1				—								

SABER Cost Management and Reporting

- SDL will establish and maintain a time-phased baseline budget by WBS for Phase CD
- SDL will continue to submit the NASA 533 series of financial reports and will include subcontractor reports as required
- SDL will contunue to submit C/SSR performance reports monthly
 - C/SSR System approval by DoD, USAF, SDIO/BMDO and NASA
 - Experience on SPIRIT II, SPIRIT III, SPAS III Contracts
 - Performance measurement system reports will provide budgeted costs, actual cost, work performed and variance analysis
 - Work accomplished is measured against the baseline and can be assessed objectively

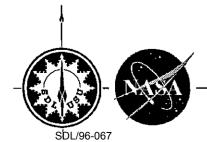
SABER Funding, Descope & Cost Estimate


James B. Miller

December 12, 1996

Phone: (757) 864-7101

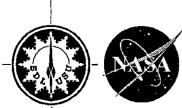
Fax: (757) 864-8818


E-Mail: j.b.miller@larc.nasa.gov

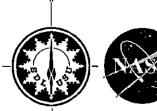
SABER Funding Guidelines

"Build to Cost"

- SABER Phase C/D cost allocation is \$13.3M in FY 1995 dollars
- SABER re-proposal in August 1996 was \$1.3M over guideline
 - Cost growth in science algorithm development & mission operations. software development
- SABER has submitted a descope plan to APL for consideration by OSS as part of the overall TIMED plan
- Some cost savings have been realized
- Some reassignment of cost between Phase C/D and E is being considered at the program level
- No official funding profile guidelines beyond FY 1997
 - FY 1997 funding guidelines received (Phase B \$230K / Phase C/D \$3.3M)
 - Date for availability of C/D funds uncertain (Target is April)
 - SABER has requested early funding of long lead subcontracts


SABER Descope Plan

- Descope plan consists of 10 descope options
 - 5 recommended for implementation at this time
 - 1 recommended for study
 - 4 not recommended for implementation


SABER Descope Options

No.	Description	Impact	Cost FY 95
1	Reduction of SDL science algorithm development support	Results in a shift of atomic oxygen and atomic hydrogen derivations from routine to analysis products. Development to begin in late in Phase C/D or in Phase E	\$150K
2	Reduction of PL science algorithm development support	Shifts development of thermospheric CO_2 retrieval algorithms to Phase E; making it an analysis product. Temperature retrieval technique will be developed by the Associate PI, and Phillips Laboratory support with more detailed models of CO_2 (15 μ m) will be brought in later in Phase C/D. There is no reduction in the overall mission science products.	\$66.5K
3	Elimination of spare cryogenic cooler	Elimination of the second cooler will necessitate using the flight cooler for developmental testing. Additional documentation and controls will be required to maintain the cooler's flight qualification. This will result in some reduction of the apparent savings (\$230K) of eliminating the second cooler. There is also increased risk to the project in the event of a failure of the mission critical flight cooler.	\$201K
4	Reduction of SDL on site support for launch	Contractor presence could be reduced or eliminated during launch vehicle integration and launch when SABER hardware is not directly involved. Supplemental support by LaRC personnel could be provided at lower manpower and travel cost to the project. Fewer, less qualified, or no instrument personnel will be present during non-critical evolutions. This could result in delays responding to instrument anomalies, anomalous responses during prelaunch activities	\$106K

SABER Descope Options

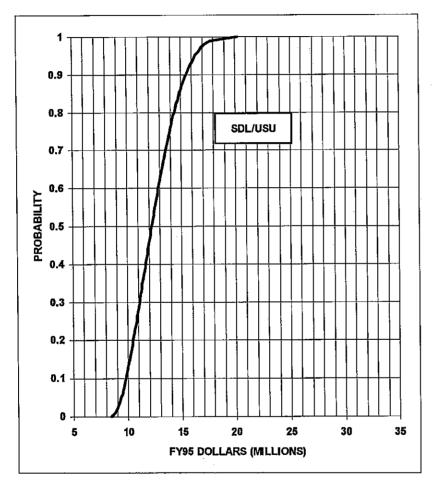
No.	Description	Impact	Cost
5	Reduction of SDL on site support for spacecraft integration and test	Contractor presence could be reduced or eliminated during periods of spacecraft I&T when SABER hardware is not directly involved. Supplemental support by LaRC personnel could be provided at lower manpower and travel cost to the project. The transportation to per diem ratio for SDL is approximately 6:1 where for LaRC it is about 1:1, so LaRC personnel could be used cost effectively to supplement contractors for short high activity periods. Fewer, less qualified, or no instrument personnel will be present during non-critical I&T evaluations. This could result in delays responding to changing I&T needs, delays responding to instrument anomalies, anomalous responses during I&T being overlooked.	\$106K
6	Simplify calibration approach	Potential loss of tractability to NIST standard, or reduction in absolute radiometric accuracy	\$20K - \$100K
7	Elimination of the full functional test following instrument shipment to APL	Elimination of the full functional test following shipment of the instrument to APL does not change or reduce the development of hardware, software or test procedures. It eliminates the packaging and shipping of the test chamber and ancillary equipment to APL, manpower to setup and checkout the chamber, the costs for expendables at APL. It would effect the duration but probably not the manpower required to perform the test, and would have only a small effect on the travel costs. Without this test we will have little or no indication of the condition of the instrument cooler, FPA, optics, or blackbody until the spacecraft TV test. We would have little or no chance to recover from a failure that occurred during shipping.	\$20K
8	Elimination of the 3 mid- wavelength channels 5, 6, 7	Elimination of the 3 mid-wavelength channels 5,6, 7 results in the elimination of H_2O , NO , and CO_2 (4.3 μm) measurements. Significant loss of SABER science. NO - lose measure of largest thermospheric radiative cooling mechanism CO_2 - lose dynamical tracer in thermosphere. NO and CO_2 together with other TIMED data offer first chance to observe thermospheric dynamics (through a tracer), and to provide magnitude of primary radiative cooling mechanism. H_2O - lose key odd-hydrogen source gas in lower mesosphere - seriously impacts ability to further understanding of O_3 chemistry.	\$178K

SABER Descope Options

No.	Description	Impact	Cost
9	Elimination of short wavelength channel 10	Elimination of channel 10 results in the elimination of $O_2(^1\Delta)$ measurement. Critical reduction of SABER science. Lose daytime O_3 (inferred from $O_2(^1\Delta)$). Lose primary method of inferring atomic oxygen. Lose ability to determine, by measurement, solar heating efficiency in Hartley band of ozone. Lose (because of loss of inferred 0) several chemical heating rate mechanisms in the lower thermosphere.	\$167K
		Therefore, lose key information on mesosphere chemistry and energetics	
10	Elimination of the 3 short wavelength channels 8,9,10	Elimination of the 3 short wavelength channels 8,9,10 results in the elimination of O_2 and OH measurements. SABER will not meet its own stated minimum science requirements/goals. Devastating science loss. In addition to that stated for $O_2(^1\Delta)$ channel alone, SABER loses capability to infer H concentration. Lose ability to determine, by measurement, the magnitude of chemical heating by H + $O_3 \rightarrow$ OH* + O_2 , thought to be single largest source of heating in 80-100 km region. Lose odd-hydrogen chemistry and coupling with O_3 . Lose large scale dynamics (planetary waves) visible in global maps of the airglow.	\$302K

SABER Cost Estimate

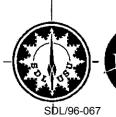
- Phase C/D plans and estimates based on following guidelines and assumptions
 - Limited FY-1997 C/D funding will be received by January 1997
 - Full FY-1997 C/D funding will be available by April 1, 1997
 - Continuous funding as requested will be received in FY 1998, 1999, & 2000
 - We will deliver the proto-flight SABER instrument to APL by June 1, 1999
 - The TIMED mission will launch January 2000
- SABER cost based on "bottoms-up" estimate of flight hardware development, technical contract management, and science costs
- Parametric cost analysis using the PRICE™ model, compared favorably with "bottom-up" estimates
- SDL revised cost estimate based on PDR baseline will be received 45 days after PDR
- MS Project schedule and spreadsheet based costing developed during Phase B will allow us to plan "what if" scenarios for changing guidelines


Parametric Model Results

SDL/USU PARAMETRIC COST ESTIMATE 8/27/96

		Low	1995 \$ Mean	High
SABER Inst	trument			J
	Flight Instrument #1	\$5,432,483	\$8,572,962	\$14,605,600
	Flight Software	\$0	\$0	\$0
	Total Instrument	\$5,432,483	\$8,572,962	\$14,605,600
GSE	•			
	Hardware	\$472,390	\$745,475	\$1,270,052
	Software	\$148,023	\$479,202	\$927,877
	Total GSE	\$620,412	\$1,224,676	\$2,197,929
Spacecraft	Integration and Test	\$213,424	\$558,826	\$1,243,021
Launch and	d Flight Operations*	\$135,756	\$135,756	\$135,756
LaRC Scier	nce Team/Program Support*	\$2,016,000	\$2,016,000	\$2,016,000
Total Phase	e C/D	\$8,418,075	\$12,508,220	\$20,198,306

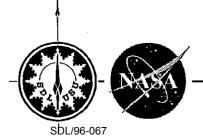
Parametric Model Results



PERCENTILE	SDL/USU
0.90	\$15.5
0.80	\$14.4
0.70	\$13.6
0.60	\$12.9
0.50	\$12.3
0.40	\$11.7
0.30	\$11.1
0.20	\$10.5
0.10	\$9.8

Re-Proposal (FY 1995 Dollars)

		Labor			Other	Pr	oject
	Civi	I Service	C	ontract	Direct	7	otal
WBS Elements	Hours	Cost		Cost			
1.0 SABER Instrument Contract					\$12,557,011	\$12	557,011
9.0 Project Management & Engineering Suppor	t .						
9.1. Project Management & Control	11960	\$ -	\$	-	\$ -	\$	-
9.2. Engineering Support	0	\$ -	\$_	-	\$ -	\$	
9.2.1Thermal & Cryogenics	5200	\$ -	\$	=	\$ -	\$	-
9.2.2 Mechanical, Structural & Test	4160	\$ -	\$	•	\$ -	\$	-
9.2.3 Pointing & Controls	3640	\$ -	\$	•	\$ -	\$	_
9.2.4 Electronics, Software & GSE	6240	\$ -	\$	-	\$ -	\$	-
9.2.5 Calibration	0	\$ -	\$	86,000	\$ -	\$	86,000
9.2.6 Quality Assurance	1560	\$ -	\$	-	\$ -	\$	-
10.0 Flight Data Management				899 SE			
10.1 Modeling & Algorithm Development						÷	
10.1.1 LaRC Workforce	16640	\$ -	\$	•	\$ -	\$	-
10.1.2 HU	0	\$ -	\$	153,327	\$ -	\$	153,327
10.1.3 SDL Science	0	\$ -	\$	225,000	\$ -	\$	225,000
10.1.4 Phillips Lab	0	\$ -	\$	210,000	\$ -	\$	210,000
10.2 Data Retrieval Software Development							
10.2.1 Level 0-1 Software Development	0	\$ -	\$	202,000	\$ -	\$	202,000
10.2.2 Level 1-2 Software Development	0	\$ -	\$	288,000	\$ -	\$	288,000
10.2.3 Flight Data Mgmt. Software	0	\$ -	\$	120,000	\$ -	\$	120,000



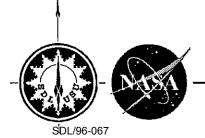
SABER Preliminary Design Review

NASA LANGLEY RESEARCH CENTER & SPACE DYNAMICS LABORATORY / USU

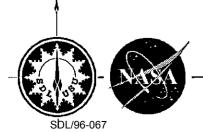
Re-Proposal (FY 1995 Dollars)

			Labor		Other	Project
	Civi	l Sei	rvice	Contract	Direct	Total
WBS Elements	Hours		Cost	Cost		
11.0 Mission Operations						
11.1 Mission Operations Management	0	\$	-	\$ -	\$ -	\$ -
11.2 MO Software Development	0	\$	-	\$ 240,000	\$ -	\$ 240,000
12.0 Scientific Investigations						
12.1 HU (Russell)	0	\$	-	\$ -	\$ -	\$ -
12.2 SDL (Espy)	0	\$		\$ -	(S	\$ -
12.3 SDL (Baker)	0	\$	•	\$	•	\$ -
12.4 SDL (Ulwick)	0	\$	-	\$ -	\$ -	\$ -
12.5 Phillips Lab (Picard)	0	\$	•	\$ -	\$ -	\$ -
12.6 NOAA (S. Solomon)	0	\$		\$	69	\$
12.7 NCAR (Garcia)	0	\$		\$ -	\$	\$
12.8 NCAR (Robel)	0	\$	-	\$ -	\$ -	\$ -
12.9 NRL (Siskind)	0	\$	-	\$ -	\$ -	\$ -
12.10 W&M (Mlynczak)	0	\$	- .	\$ -	\$ -	\$ -
Total without LaRC Program Support	49399	\$	-	\$ 1,524,327	\$12,557,011	\$14,081,337
Program Support		\$	538,034			\$ 538,034
Total Category Cost	49399	\$	538,034	\$ 1,524,327	\$ 12,557,011	\$ 14,619,371

Re-Proposal (Real Year Dollars)


	7	Total		Total		Total	Total		Project	
WBS Element	F	Y 1997	F	Y 1998	F	Y 1999	F	TY 2000		Total
1.0 SABER Instrument Contract	\$ 2	,271,614	\$ 8	3,455,381	\$:	2,767,787	\$	652,830	\$ 1	4,147,612
9.0. Project Management & Engineering Support										
9.1. Project Management & Control	\$	-	\$	•	\$	•	\$		\$	-
9.2. Engineering Support	\$	•	\$	-	\$	*	\$	•	\$	-
9.2.1Thermal & Cryogenics	\$	•	\$	-	\$		\$	-	\$	
9.2.2 Mechanical, Structural & Test	\$	-	\$	•	\$	•	\$		\$	•
9.2.3 Pointing & Controls	\$	-	\$	-	\$	•	\$	•	\$	•
9.2.4 Electronics, Software & GSE	\$		\$	•	\$		\$	•	\$	-
9.2.5 Calibration	\$	32,386	\$\$	44,865	\$	18,646	\$	•	\$	95,896
9.2.6 Quality Assurance	\$	•	\$		\$		\$	-	\$	•
10.0 Flight Data Management										
10.1 Modeling & Algorithm Development										
10.1.1 LaRC Workforce	\$	-	\$	•	\$		\$	-	\$	-
10.1.2 HU	\$	49,462	\$	52,161	\$	71,091	\$	•	\$	172,714
10.1.3 SDL Science	\$	60,723	\$	84,122	\$	87,402	\$	22,703	\$	254,950
10.1.4 Phillips Lab	\$	56,675	\$	78,514	\$	81,576	\$	21,189	\$	237,953
10.2 Data Retrieval Software Development										
10.2.1 Level 0-1 Software Development	\$	45,340	\$	62,811	\$	93,229	\$	29,060	\$	230,440
10.2.2 Level 1-2 Software Development	\$	77,726	\$	107,676	\$\$	111,875	\$	29,060	\$	326,336
10.2.3 Flight Data Mgmt. Software	\$	32,386	\$	44,865	\$	46,615	\$	12,108	\$	135,973

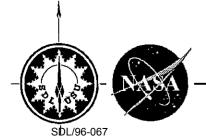
Re-Proposal (Real Year Dollars)


	Total		Total		Total		Total		Project	
WBS Element	F	Y 1997		FY 1998	3	FY 1999	F	Y 2000		Total
11.0 Mission Operations										
11.0 Mission Operations Management	\$		\$		\$	•	\$	-	\$	•
11.2 MO Software Development	\$_	64,771	\$	89,730	\$	93,229	\$	24,216	\$	271,947
12.0 Scientific Investigations										
12.1 HU (Russell)	\$	•	\$	•	\$	-	\$	-	\$	
12.2 SDL (Espy)	\$	•	\$	•	\$	-	\$	•	\$	•
12.3 SDL (Baker)	\$	_	\$	-	\$	•	\$\$	-	6 \$	-
12.4 SDL (Ulwick)	\$	•	\$	-	\$	-	\$	•	\$	*
12.5 Phillips Lab (Picard)	\$	•	\$	-	\$	_	\$	•	\$	•
12.6 NOAA (S. Solomon)	\$	-	\$		\$	-	\$		\$	1
12.7 NCAR (Garcia)	\$		\$	-	\$		\$		\$\$	•
12.8 NCAR (Robel)	\$	•	\$	-	\$	-	\$			
12.9 NRL (Siskind)	\$	4	\$	•	\$	•	\$		\$	-
12.10 W&M (Mlynczak)	\$	-	\$		\$		\$	-	\$	•
Total without LaRC Program Support	\$ 2	2,691,082	\$	9,020,123	\$	3,371,450	\$	791,166	\$:	15,873,821
Program Support	\$	152,940	\$	158,203	\$	163,671	\$	139,081	\$	613,895
Total Category Cost	\$ 2	2,844,022	\$	9,178,326	\$	3,535,120	\$	930,247	\$	16,487,716

SABER Preliminary Design Review

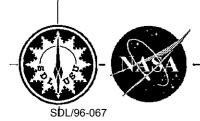
Re-proposed (FY 95 Dollars)

		Labor		Other	Phase E
	Civi	il Service	Contract	Cost	Total
WBS Elements	Hours	Cost	Cost		
9.0 Project Management & Engineering Support					
9.1. Project Management & Control	14300	\$.	- \$ -	\$ -	\$ -
9.2. Engineering Support					
9.2.1Thermal & Cryogenics	0	\$	- \$ -	\$ -	\$ -
9.2.2 Mechanical, Structural & Test	0	\$	- \$ -	\$ -	\$ -
9.2.3 Pointing & Controls	0	\$	- \$ -	\$ -	\$ -
9.2.4 Electronics, Software & GSE	0	\$	- \$ -	\$ -	\$ -
9.2.5 Calibration	0	\$	- \$ -	\$ -	\$ -
9.2.6 Quality Assurance	0	\$	- \$ -	\$ -	\$ -
10.0 Flight Data Management	0	\$	- \$ -	\$ -	\$ -
10.1 Modeling & Algorithm Development					
10.1.1 LaRC Workforce	15600	\$	- \$ -	\$ -	\$ -
10.1.2 HU	0	\$	- \$ -	\$ -	\$ -
10.1.3 SDL Science	0	\$	- \$ -	\$ -	\$ -
10.1.4 Phillips Lab	0	\$	- \$ -	\$ -	\$ -
10.2 Data Retrieval Software Development					
10.2.1 Level 0-1 Software Development	0	\$	- \$ 192,000	\$ -	\$ 192,000
10.2.2 Level 1-2 Software Development	0	\$	- \$ 387,744	\$ -	\$ 387,744
10.2.3 Flight Data Management Software	0	\$	- \$ 161,560	\$ -	\$ 161,560

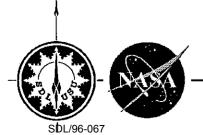


SABER Preliminary Design Review

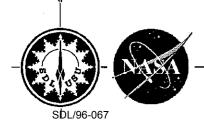
NASA LANGLEY RESEARCH CENTER & SPACE DYNAMICS LABORATORY / USU


Re-proposed (FY 95 Dollars)

			Labor		.]	Other		Phase E	
	Civi	il Serv	vice	C	ontract		Cost		Total
WBS Elements	Hours	С	Cost		Cost				
11.0 Mission Operations									
11.1 Mission Operations Management	0	\$	-	\$	320,000	\$	90,848	\$	410,848
11.2 Mission Operations Software Developmen	ո 0	\$	-	\$	-	\$	-	\$	
12.0 Scientific Investigations									
12.1 HU (Russell)	0	\$	-	\$	431,806	\$	-	\$	431,806
12.2 SDL (Espy)	0	\$		\$	192,493	\$	-	\$	192,493
12.3 SDL (Baker)	0	\$	-	\$	192, 4 93	\$\$	•	\$\$	192,493
12.4 SDL (Ulwick)	0	\$	_	\$	115,496	\$	-	\$	115,496
12.5 Phillips Lab (Picard)	0	\$	-	\$	307,988	\$		\$	307,988
12.6 NOAA (S. Solomon)	0	\$		\$	192,493	\$	-	\$	192,493
12.7 NCAR (Garcia)	0	\$	-	\$	192,493	\$	•	\$	192,493
12.8 NCAR (Robel)	0	\$		\$	115,496	\$		\$	115,496
12.9 NRL (Siskind)	0	\$	_	\$	192,493	\$	-	\$	192,493
12.10 W&M (Mlynczak)	0	\$	-	\$	303,176	\$		\$	303,176
Total without LaRC Program Support	29899	\$	-	\$	3,297,730	\$	90,848	\$	3,388,578
Program Support		\$	275,000					\$	275,000
Total Category Cost	29899	\$	275,000	\$	3,297,730	\$	90,848	\$	3,663,578


Proposed Descope & Adjustments (FY 95 Dollars)

		Labor		Other	Project
	Civi	l Service	Contract	Direct	Total
WBS Elements	Hours	\mathbf{Cost}	Cost		
1.0 SABER Instrument Contract				\$12,071,857	\$12,071,857
9.0 Project Management & Engineering Suppor	t				
9.1. Project Management & Control	11960	\$ -	\$ -	\$ -	\$ -
9.2. Engineering Support	0	\$ -	\$ -	\$ -	\$ -
9.2.1Thermal & Cryogenics	5200	\$ -	\$ -	\$ -	\$ -
9.2.2 Mechanical, Structural & Test	4160	\$ -	\$ -	\$ -	\$ -
9.2.3 Pointing & Controls	3640	\$	\$ -	\$ -	\$ -
9.2.4 Electronics, Software & GSE	6240	\$ -	\$ -	\$ -	\$ -
9.2.5 Calibration	0	\$ -	\$ 86,000	\$ -	\$ 86,000
9.2.6 Quality Assurance	1560	\$ -	\$ -	\$ -	\$ -
10.0 Flight Data Management					
10.1 Modeling & Algorithm Development					
10.1.1 LaRC Workforce	16640	\$ -	\$ -	\$ -	\$ -
10.1.2 HU	0	\$ -	\$ 107,508	\$ -	\$ 107,508
10.1.3 SDL Science	0	\$ -	\$ 75,000	\$ -	\$ 75,000
10.1.4 Phillips Lab	0	\$ -	\$ 143,500	\$ -	\$ 143,500
10.2 Data Retrieval Software Development				100	
10.2.1 Level 0-1 Software Development	0	\$ -	\$ 202,000	\$ -	\$ 202,000
10.2.2 Level 1-2 Software Development	0	\$ -	\$ 288,000	\$ -	\$ 288,000
10.2.3 Flight Data Mgmt. Software	0	\$	\$ -	\$ -	\$ -


Proposed Descope & Adjustments (FY 95 Dollars)

	Project Totals													
			Labor			Other	Project							
	Civi	l Sei	rvice	C	ontract	\mathbf{Direct}	Total							
WBS Elements	Hours		Cost		Cost									
11.0 Mission Operations														
11.1 Mission Operations Management	0	\$	-	\$	-	\$ -	\$ -							
11.2 MO Software Development	0	\$	-	\$	-	\$ -	\$ -							
12.0 Scientific Investigations														
12.1 HU (Russell)	0	\$	-	\$		\$ -	\$ -							
12.2 SDL (Espy)	0	\$	-	\$	-	\$ -	\$ -							
12.3 SDL (Baker)	0	\$	-	\$		\$ -	\$ -							
12.4 SDL (Ulwick)	0	\$	-	\$	-	\$ -	\$ -							
12.5 Phillips Lab (Picard)	0	\$	-	\$	-	\$ -	\$ -							
12.6 NOAA (S. Solomon)	-0	\$	-	\$	-	\$ -	. \$ -							
12.7 NCAR (Garcia)	0	\$	-	\$	-	\$ -	\$ -							
12.8 NCAR (Robel)	0	\$	-	\$	-	\$ -	\$ -							
12.9 NRL (Siskind)	0	\$	-	\$	-	\$ -	\$ -							
12.10 W&M (Mlynczak)	0	\$		\$	•	\$ -	\$ -							
Total without LaRC Program Support	49399	\$	•	\$	902,008	\$12,071,857	\$12,973,865							
Program Support		\$	538,034				\$ 538,034							
Total Category Cost	49399	\$	538,034	\$	902,008	\$ 12,071,857	\$ 13,511,899							

Proposed Descope & Adjustments (Real Year Dollars)

		rotal [Total		Total		Total	E	roject
WBS Element	F	Y 1997]	FY 1998	F	Y 1999	F	Y 2000		Total
1.0 SABER Instrument Contract	\$ 2	,887,127	\$	7,509,639	\$ 2	2,652,985	\$	515,254	\$ 1	3,565,004
9.0. Project Management & Engineering Support										
9.1. Project Management & Control	\$	-	\$		\$	-	\$	•	\$	
9.2. Engineering Support	\$	-	\$	-	\$	•	\$	F	\$	-
9.2.1Thermal & Cryogenics	\$	-	\$	-	\$	-	\$	-	\$.
9.2.2 Mechanical, Structural & Test	\$		\$		\$	•	\$		\$	-
9.2.3 Pointing & Controls	\$.	-	\$	-	\$	=	\$	-	63	-
9.2.4 Electronics, Software & GSE	\$	•	\$	-	\$	-	\$	-	\$	-
9.2.5 Calibration	\$	32,386	\$	44,865	\$	18,646	\$		\$	95,896
9.2.6 Quality Assurance	\$	-	\$	-	\$		\$	•	\$	
10.0 Flight Data Management								Alta II		
10.1 Modeling & Algorithm Development										
10.1.1 LaRC Workforce	\$	-	\$	•	\$	-	\$		\$	•
10.1.2 HU	\$	_	\$	52,161	\$	71,091	\$	_	\$	123,252
10.1.3 SDL Science	\$		\$	58,885	\$	26,221	\$	•	\$	85,106
10.1.4 Phillips Lab	\$	34,005	\$	54,959	\$	57,103	\$	16,951	\$	163,019
10.2 Data Retrieval Software Development										
10.2.1 Level 0-1 Software Development	\$	45,340	\$	62,811	\$	93,229	\$	29,060	\$	230,440
10.2.2 Level 1-2 Software Development	\$	77,726	\$	107,676	\$	111,875	\$	29,060	\$	326,336
10.2.3 Flight Data Mgmt. Software	\$		\$	•	\$	-	\$		\$	

SABER Preliminary Design Review

Proposed Descope & Adjustments (Real Year Dollars)

	Total	Total	Total	Total	Project
WBS Element	FY 1997	FY 1998	FY 1999	FY 2000	Total
11.0 Mission Operations					
11.0 Mission Operations Management	\$ -	\$ -	- \$	\$	\$ -
11.2 MO Software Development	\$ -	\$ -	\$ -	\$ -	\$ -
12.0 Scientific Investigations					
12.1 HU (Russell)	\$ -	\$ -	\$ -	\$ -	\$ -
12.2 SDL (Espy)	\$ -	\$ -	\$ -	\$ -	\$ -
12.3 SDL (Baker)	\$ -	\$ -	\$ -	\$ -	\$ -
12.4 SDL (Ulwick)	\$ -	\$ -	\$ -	\$ -	\$ -
12.5 Phillips Lab (Picard)	\$ -	\$ -	\$ -	\$	\$ -
12.6 NOAA (S. Solomon)	\$ -	\$ -	\$ -	\$ -	\$ -
12.7 NCAR (Garcia)	\$ -	\$ -	\$ -	\$ -	\$ -
12.8 NCAR (Robel)	\$ -	\$ -	\$ -	\$	
12.9 NRL (Siskind)	\$	\$ -	\$ -	\$	\$ -
12.10 W&M (Mlynczak)	\$ -	\$ -	\$ -	\$ -	\$ -
Total without LaRC Program Support	\$ 3,076,583	\$ 7,890,997	\$ 3,031,149	\$ 590,324	\$14,589,053
Program Support	\$ 152,940	\$ 158,203	\$ 163,671	\$ 139,081	\$ 613,895
Total Category Cost	\$ 3,229,523	\$ 8,049,199	\$ 3,194,820	\$ 729,406	\$ 15,202,948

SABER Preliminary Design Review

							Cost Com	oonent							1	-	Total
		Lal	or		Other Direct Cost											-	WBS
		Staff		Student	Travel	Т	Parts &	Machi	ine	Subco	tracts		Other	Equip	ment	E	lement
WBS Elements	Hours	Cost	Hours	Cost		_	Materials	Shop	p	< \$25,000	> \$25,000	1			$\neg \neg$		Cost
1.1 Program Management & Control	8970	\$ 250,341	0	\$ -	\$ 257,60	7 3	\$ -	\$		\$ -	\$	- \$	30,238	\$	- 1	\$	538,186
2.1 System Engineering	3120	\$ 98,093	0	\$	\$	- [\$ -	\$	-	\$ -	\$	- \$	8,465	\$	-	\$	106,559
2.2 Analysis																	
2.2.1 Thermal Analysis	3233	\$ 120,900	0	\$ -	\$	• [3	ş -	\$	•	\$ -	\$	- \$	10,434	\$		\$	131,334
2.2.2 Structural Analysis	1768	\$ 76,814	0	\$ -	\$. [\$ -	\$	•	\$ -	\$	- \$	6,629	\$	•	\$	83,443
2.2.3 Optical & Radiometric Analysis	1560	\$ 67,817	0	\$ -	\$	1.5	\$ -	\$		\$ -	\$	- \$	5,853	\$		\$	73,669
2.3 Documentation	13017	\$ 330,588	0	\$ -	\$	_ []	\$	\$		\$ -	\$	- \$	28,530	\$	1	\$	359,118
2.4 Calibration Planning	3744	\$ 76,473	0	\$ -	\$	- 1	\$ -	\$	•	\$ -	\$	- \$	6,600	\$	- 1	\$	83,072
2.5 Product Assurance	2687	\$ 54,897	4853	\$ 28,143	\$	- "	\$ -	\$	-	\$ -	\$	- \$	7,166	\$	-	\$	90,206
2.6 Contamination Control	1872	\$ 58,861	1647	\$ 12,179	\$		\$ 41,117	\$	-	\$	\$	- \$	6,131	\$		\$	118,287
2.7 Science Support	0	\$ -	0	\$	\$	•	\$ -	\$		\$ -	\$	- \$		\$		\$	
3.1 Breadboards	0	\$ -	0	\$ -	\$	- ;	\$	\$		\$ -	\$	- \$	-	\$	-	\$	
8.1.1 FPA Breadboard	0	\$ -	0	\$ -	\$	<u>. [</u>	\$ -	\$		\$ -	\$	- \$		\$		\$	
3.1.2 Scanner Breadboard	1560	\$ 29,153	0	\$ -	\$	- :	\$ 4,826	\$ 20	0,077	\$ -	\$	- \$	2,516	\$		\$	56,572
3.1.3 Electronic/Detector Breadboard	1343	\$ 24,004	0	\$ -	\$	-	\$ 4,826	\$	3,346	\$ -	\$	- \$	2,159	\$		\$	34,335
3.1.4 Mass Model & Cooler Mount	1387	\$ 24,886	0	\$ -	\$		\$ -	\$ 29	0,077	\$ -	\$	- \$	21,179	\$		\$	66,142
3.2 Protoflight Instrument																	
3.2.1 Electronics																	
3.2.1.1 Analog Electronics	3709	\$ 85,393	0	\$	\$	-	\$ 73,892	\$	-	\$ -	\$	- \$	7,369	\$		\$	166,654
3.2.1.2 Digital Electronics	4160	\$ 73,058	0	\$ -	\$	-	\$ 44,346	\$		\$	\$	- \$	6,305	\$		\$	123,708
3.2.1.3 Scan Mirror Electronics	1993	\$ 42,865	0	\$ -	\$	•	\$ 14,782	\$	•	\$ -	\$	- \$	3,699	\$	- 1	\$	61,346
3.2.1.4 Interconnecting & Packaging	2392	\$ 38,675	0	\$ -	\$	\cdot	\$ 14,782	\$ 1	3,402	\$ -	\$	- \$	14,226	\$		\$	81,085
3.2.2 Telescope Assembly																	
3.2.2.1 Reimaging & Fore Optics	6361	\$ 131,086	0	\$ -	\$	-	\$ 6,877	\$ 5	3,606	\$ -	\$	- \$	16,757	\$		\$	208,326
3.2.2.2 Mirrors - SSG	0	\$ -	0	\$ -	\$		\$ -	\$		\$ -	\$ 282,62	6 \$	_	\$	•	\$	282,626
3.2.2.3 Scanner Assembly	3189	\$ 55,179	0	\$ -	\$	-	\$ 5,666	\$ 8	0,409	\$ -	\$	- \$	10,206	\$	-	\$	151,461
3.2.2.3.9 BEI - Scanner	0	\$ -	0	\$	\$		\$	\$		\$.	\$ 160,78	1 \$		\$	•	\$	160,781
3.2.2.4 FPA Assembly																	
3.2.2.4.1 Detectors - EG&G	0	\$ -	0	\$ -	\$	•	\$ -	\$		\$ -	\$ 827,19	5 \$		\$		\$	827,195
3.2.2.4.2 Optical Filters - OCLI	0	\$ -	0	\$ -	\$	-	\$ -	\$		\$	\$ 646,10	0 \$		\$	-	\$	646,100
3.2.2.4.3 FPA Assembly - SDL	2825	\$ 62,179	0	\$ -	\$	-	\$ 6,216	\$ 2	6,803	\$.	\$	- \$	5,366	\$	•	\$	100,565
3.2.2.5 Baffle Assembly	1976	\$ 42,161	0	\$ -	\$	-	\$ 13,308	\$ 2	6,803	\$.	\$	- \$	9,083	\$		\$	91,355
3.2.2.6 IFC Sources	2687	\$ 44,143	0	\$ -	\$		\$ 5,862	\$ 1	3,402	\$ -	\$	- \$	3,810	\$		\$	67,216
3.2.2.7 Chopper - TFR	0	\$ -	0	\$ -	\$	\cdot	\$ -	\$		\$ -	\$ 65,28	3 \$	-	\$		\$	65,283
3.2.3 Cooler Assembly									e essere								
3.2.3.1 Refrigerator - TRW	0	\$ -	0	\$ -	\$	\Box	\$ -	\$		\$ -	\$ 1,187,56	6 \$		\$		\$	1,187,566
3.2.3.2 Cooler Mount	1924	\$ 42,168	0	\$ -	\$	-1	\$	\$ 2	6,803	\$ -	\$	- \$	9,083	\$		\$	78,054
3.2.4 Support Structure																	
3.2.4.1 Composite Structure - COI	0	\$ -	0	\$ -	\$	-	\$ -	\$		\$ -	\$ 136,69	0 \$		\$	-	\$	136,690
3.2.4.2 Support Structure - SDL	4091	\$ 76,541	0	\$ -	\$	-1	\$ 3,082	\$ 2	0,102	\$.	\$	- \$	17,494	\$		\$	117,220
3.2.5 Environmental Control	1387	\$ 22,611	0	\$ -	\$		\$ 25,217	\$		\$ -	\$	- \$	1,951	+		\$	49,779
4.1 Electrical GSE	607	\$ 9,256	0	\$ -	\$	_	\$ 85,076	\$	-	\$ -	\$	- 8	171	_	30,405	\$	124,908
4.2 GSE Software	1820	\$ 37,074	_	\$ 23,024	+		\$ 26,462	œ.		\$ -	\$. 8	5.186			8	91,746

SABER Reproposal (8/31/96)SDL FY 95

						Cost Com	ponent					Total		
		Lz	bor		Other Direct Cost									
		Staff		Student	Travel	Parts &	Machine	Subco	ntracts	Other	Equipment	Element		
WBS Elements	Hours	Cost	Hours	Cost		Materials	Shop	< \$25,000	> \$25,000			Cost		
4.3 Mechanical GSE														
4.3.1 GSE Test Chamber	4437	\$ 79,880	0	\$ -	\$.	\$ 133,487	\$ 56,940	\$ -	\$ -	\$ 6,894	\$ -	\$ 277,201		
4.3.2 GSE Blackbodies	5200	\$ 95,436	0	\$ -	\$ -	\$ 72,658	\$ 43,555	\$ -	\$ -	\$ 8,236	\$ -	\$ 219,880		
4.3.3 GSE Full Field Collimator	3033	\$ 54,412	. 0	\$ -	\$ -	\$ 102,458	\$ 30,153	\$ -	\$ -	\$ 4,696	\$ -	\$ 191,720		
4.3.4 GSE Shipping Container & Handling Fixture	1369	\$ 24,661	0	\$ -	\$ -	\$ 11,806	\$ -	\$ -	\$ -	\$ 13,017	\$	\$ 49,484		
5.1 Integration & Test	33019	\$ 629,996	2427	\$ 17,952	\$ -	\$ 12,964	\$ 40,201	<u> </u>	\$ -	\$ 77,693	\$ -	\$ 778,805		
5.2 Environmental Test														
5.2.1 Environmental Testing (In-house)	520	\$ 9,300	0	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 17,182	\$ -	\$ 26,438		
5.2.2 EMI Testing - NTS	0	\$	0	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 15,703	\$ -	\$ -	\$ 15,703		
6.0 Calibration	7696	\$ 159,073	2080	\$ 15,421	\$ -	\$ 16,286	\$ -	\$ -	\$ -	\$ 15,059	\$ -	\$ 205,838		
7.0 S/C Integration & Test	5685	\$ 131,08	. 0	\$.	\$ 11,208	\$ -	\$ -	\$ -	\$ -	\$ 11,312	\$ -	\$ 153,601		
8.0 Launch Support	2756	\$ 64,831	0	\$ -	\$ -	\$.	\$ -	\$ -	\$ -	\$ 5,596	\$ -	\$ 70,434		
Unburdened Total	147097	\$ 3,223,89	14126	\$ 96,718	\$ 268,815	\$ 725,991	\$ 475,680	\$ -	\$ 3,321,942	\$ 406,241	\$ 30,405	\$ 8,549,691		
Fringe Benefits	0	\$ 1,163,81	0	\$ 3,869	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 1,167,687		
Program Support 2.49%	0	\$ 109,25	. 0	\$ 2,605	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 111,759		
Program Support 1.86%	0	\$ 81,61	0	\$ 1,871	\$ -	\$ -	\$ -	\$ -	\$ 61,788	\$ -	\$ -	\$ 145,271		
Overhead @ 39%	0	\$ 1,785,64	0	\$ 40,935	\$ 104,838	\$ 283,137	\$ 185,515	\$ -	\$ 24,097	\$ 158,434	\$ -	\$ 2,582,604		
Total Category Cost	0	\$ 6,364,22	0	\$ 145,898	\$ 373,654	\$ 1,009,128	\$ 661,195	\$ -	\$ 3,407,828	\$ 564,675	\$ 30,405	\$ 12,557,011		

						Cost Com	ponent		•				Total
		Lab	or				0	ther Direct Co	WBS				
		Staff		Student	Travel	Parts &	Machine	Subco	ntracts	Other	Equipment	E	lement
WBS Elements	Hours	Cost	Hours	Cost		Materials	Shop	< \$25,000	> \$25,000				Cost
1.1 Program Management & Control	8970	\$ 250,341	0	\$ -	\$ 193,684	\$ -	\$ -	\$ -	\$ -	\$ 30,238	\$ -	₩.	474,262
2.1 System Engineering	3120	\$ 98,093	O.	\$ -	\$.	\$ -	\$ -	\$ -	\$ -	\$ 8,465	\$	\$_	106,559
2.2 Analysis													
2.2.1 Thermal Analysis	3233	\$ 120,900	0	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 10,434	\$ -	\$	131,334
2.2.2 Structural Analysis	1768	\$ 76,814	0	\$ -	\$ -	\$.	\$ -	\$ -	\$ -	\$ 6,629	\$ -	\$	83,443
2.2.3 Optical & Radiometric Analysis	1560	\$ 67,817	0	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 5,853	 \$ -	\$	73,669
2.3 Documentation	13017	\$ 330,588	0	\$ -	\$ -	\$ -	\$.	\$	\$ -	\$ 28,530	\$ -	\$	359,118
2.4 Calibration Planning	3744	\$ 76,473	0	\$	\$	\$	\$	\$ -	\$ -	\$ 6,600	\$	\$_	83,072
2.5 Product Assurance	2687	\$ 54,897	4853	\$ 28,143	\$ -	\$	\$	\$ -	\$ -	\$ 7,166	\$ -	\$	90,206
2.6 Contamination Control	1872	\$ 58,861	1647	\$ 12,179	\$ -	\$ 41,117	,	\$ -	\$ -	\$ 6,131	\$ -	\$	118,287
2.7 Science Support	0	\$	0	\$ -	\$	\$ -	\$ -	\$ -	\$.	\$ -	\$ -	\$	
3.1 Breadboards	0	\$ -	0	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$	
3.1.1 FPA Breadboard	0	\$ -	0	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$	
3.1.2 Scanner Breadboard	1560	\$ 29,153	0	\$.	\$ -	\$ 4,826	\$ 20,077	\$ -	\$ -	\$ 2,516	\$	\$	56,572
3.1.3 Electronic/Detector Breadboard	1343	\$ 24,004	0	\$ -	\$ -	\$ 4,826	\$ 3,346	\$ -	\$ -	\$ 2,159	\$ -	\$	34,335
3.1.4 Mass Model & Cooler Mount	1387	\$ 24,886	0	\$	\$ -	\$ -	\$ 20,077	\$ -	\$ -	\$ 21,179	\$ -	\$	66,142
3.2 Protoflight Instrument			200										
3.2.1 Electronics													
3.2.1.1 Analog Electronics	3709	\$ 85,393	0	\$	\$ -	\$ 73,892	\$	\$	\$ -	\$ 7,369	\$	\$	166,654
3.2.1.2 Digital Electronics	4160	\$ 73,058	0	\$ -	\$ -	\$ 44,346	\$ -	\$	\$ -	\$ 6,306	\$ -	\$	123,708
3.2.1.3 Scan Mirror Electronics	1993	\$ 42,865	0	\$ -	\$ -	\$ 14,782	\$ -	\$ -	\$ -	\$ 3,699	\$ -	\$	61,346
3.2.1.4 Interconnecting & Packaging	2392	\$ 38,675	0	\$ -	\$ -	\$ 14,782	\$ 13,402	\$ -	\$.	\$ 14,226	\$	\$_	81,085
3.2.2 Telescope Assembly													
3.2.2.1 Reimaging & Fore Optics	6361	\$ 131,086	0	\$ -	\$ -	\$ 6,877	\$ 53,606	\$ -	\$ -	\$ 16,757	\$ -	\$	208,326
3.2.2.2 Mirrors - SSG	0	\$ -	0	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 282,626	\$	\$ -	\$	282,626
3.2.2.3 Scanner Assembly	3189	\$ 55,179	0	\$ -	\$ -	\$ 5,666	\$ 80,409	\$.	\$ -	\$ 10,206	\$ -	\$	151,461
3.2.2.3.9 BEI - Scanner	0	\$ ·	0	\$.	\$ -	\$ -	\$ -	\$ -	\$ 160,781	\$ -	\$ -	\$	160,781
3.2.2.4 FPA Assembly													
3.2.2.4.1 Detectors - EG&G	0	\$ -	0	\$ -	\$ -	\$	\$ -	\$ -	\$ 848,057	\$	\$	\$	848,057
3.2.2.4.2 Optical Filters - OCLI	0	\$ -	0	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 646,100	\$.	\$ -	\$	646,100
3.2.2.4.3 FPA Assembly - SDL	2825	\$ 62,179	0	\$ -	\$ -	\$ 6,216	\$ 26,803	\$ -	\$ -	\$ 5,366	\$ -	\$	100,565
3.2.2.5 Baffle Assembly	1976	\$ 42,161	0	\$ -	\$ -	\$ 13,308	\$ 26,803	\$.	\$.	\$ 9,083	\$ -	\$	91,356
3.2.2.6 IFC Sources	2687	\$ 44,143	0	\$ -	\$.	\$ 5,862	\$ 13,402	\$.	\$ -	\$ 3,810	\$ -	\$	67,216
3.2.2.7 Chopper - TFR	0	\$ -	0	\$.	\$ -	8 .	\$.	\$ -	\$ 65,283	\$	\$ -	\$	65,283
3.2.3 Cooler Assembly	2000000												
3.2.3.1 Refrigerator - TRW	0	\$ -	0	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 991,421	\$	\$ -	\$	991,421
3.2.3.2 Cooler Mount	1924	\$ 42,168	_	s -	\$ -	\$ -	\$ 26,803	\$ -	\$ -	\$ 9,083	\$ -	\$	78,054
3.2.4 Support Structure		7 -,100		T.						1			
3.2.4.1 Composite Structure - COI	0	s -	0	s -	s -	s .	\$ -	s -	s -	S	s -	\$	<u>romanistrations</u>
3.2.4.2 Support Structure - SDL	4091	\$ 76,541	0	\$ -	\$ -	\$ 36,908	+	\$.	\$ -	\$ 17,494	- · ·	\$	151,046
3.2.5 Environmental Control	1387	\$ 22,611		\$.	\$.	\$ 25.217		\$.	\$ -	\$ 1,951		\$	49,77
4.1 Electrical GSE	607	\$ 9,256	_	\$ -	\$ -	\$ 85,076	, ,	\$.	\$.	\$ 171	1	7	124,90
4.2 GSE Software	1820	\$ 37.074	3120		 	\$ 26,462	+	\$	Ψ	\$ 5,186		1 .	91,74

DRAFT SABER Descope (11/13/96)SDL FY 95

								_	Cost Com	pon	ent							J	Total
			Lab	or			Other Direct Cost											_	WBS
		Staff	r i	5	tudent		Travel		Parts &	M	fachine	Subc	ntr	acts		Other	Equipmen	,ŧ	Element
WBS Elements	Hours		Cost	Hours	Cos	st		1	Vaterials		Shop	< \$25,000	Ι	> \$25,000				ユ	Cost
4.3 Mechanical GSE																			
4.3.1 GSE Test Chamber	4437	\$	79,880	0	\$		\$. \$	133,487	\$	56,940	\$ -	\$		\$	6,894	\$	-	\$ 277,201
4.3.2 GSE Blackbodies	5200	\$	95,436	0	\$	•	\$	- \$	72,653	\$	43,555	\$	\$		\$	8,236	\$	·	\$ 219,880
4.3.3 GSE Full Field Collimator	3033	63	54,412	0	\$	-	\$	- \$	102,458	\$	30,153	\$ -	\$	-	\$	4,696	\$	<u>- </u>	\$ 191,720
4.3.4 GSE Shipping Container & Handling Fixture	1369	69	24,661	0	Ş	•	\$	- \$	11,806	\$		\$.	\$	-	\$	13,017	\$	┵	\$ 49,484
5.1 Integration & Test	33019	\$	629,996	2427	\$ 1	17,952	\$	- \$	12,964	\$	40,201	\$ -	\$		\$	77,698	\$	1	\$ 778,805
5.2 Environmental Test														P					
5.2.1 Environmental Testing (In-house)	520	\$	9,306	0	\$	<u>- i</u>	\$	- \$	•	\$		\$ -	\$		\$	17,132	\$	ᅶ	\$ 26,488
5.2.2 EMI Testing - NTS	0	\$	•	0	\$	-	\$	- \$		\$		\$ -	\$	15,703	\$	-	\$	ᆚ	\$ 15,703
6.0 Calibration	7696	\$	159,073	2080	\$ 1	15,421	\$	- \$	16,286	\$		\$	\$	-	\$	15,059	\$	ᆚ	\$ 205,838
7.0 S/C Integration & Test	4125	\$	99,144	0	\$	-	\$ 11,20	3 \$		\$	-	\$	\$		\$	8,556	\$	┵	\$ 118,909
8.0 Launch Support	1326	\$	38,170	0	\$	-	\$	- \$	•	\$	-	\$	\$	•	\$	3,294	\$	ᆚ	\$ 41,46 4
Unburdened Total	144107	\$	8,165,293	14126	\$ 9	96,718	\$ 204,89	2 \$	759,817	\$	475,680	\$	- \$	3,009,971	\$	401,183	\$ 30,40	15	\$ 8,143,959
Fringe Benefits	0	\$	1,142,276	0	\$	3,869	\$	- \$		\$	-	\$	\$	•	\$	-	\$	ᆚ	\$ 1,146,145
Program Support 2.49%	0	\$	107,258	0	\$	2,505	\$	- \$	-	\$	•	\$	<u> \$</u>		\$	-	\$	<u>┙</u>	\$ 109,763
Program Support 1.86%	0	\$	80,121	0	\$	1,871	\$	- \$		\$	- '	\$. \$	55,985	\$	-	\$	·	\$ 137,977
Overhead @ 39%	0	\$	1,753,030	0	\$	40,935	\$ 79,90	B \$	296,329	\$	185,515	\$. \$	21,834	\$	156,462	\$	<u>.</u>]	\$ 2,534,013
Total Category Cost	0	\$	6,247,978	0	\$ 14	45,898	\$ 284,79	9 \$	1,056,146	\$	661,195	\$	\$ \$	3,087,791	\$	557,645	\$ 30,40)5	\$ 12,071,857